
Volume:5 Issue:2, February 2000

The World’s Leading Java Resource

TM

SUN AND IBM: ARE THERE ISSUES?

Feature: Creating a JSP JavaBeans Framework David Lyons
How to implement a JSP component-based framework 20

Java Help: An AWT Tip Window Control Pat Paternostro
A simple help mechanism for your Java program’s GUI controls 38

CORBA Corner: Functional Testing of Middle-Tier Servers Todd Scallan
Use standard middleware to implement a generic test tool & Thomas Kern 46

E-Java: The Application Server Turf Ajit Sagar
The one-stop shop for middle-tier applications 54

Java & Lotus Domino: Domino and Java, Finally Tony Patton
Begin Domino development without learning a new language 58

EJB Home: E-Business with EJBs Jason Westra
An e-business solution could mean the difference between life and death 64

Feature: Secrets of the JMF Linden deCarmo
Multimedia building blocks for use in your applets and applications 70

Programming Languages for the JVM Rick Hightower
Conquer your next Java project in record time 80

Java Servlets: Advanced Features A.V.B. Subrahmanyam
Enterprise-level Web application development 88

SYS-CON
PUBLICATIONS

Java COM

From the Editor
To BEA or Not to BEA

by Sean Rhody pg. 5

IMHOs
Refining the Process
by George Paolini pg. 7

Opening the Door for the
Next Generation of E-Business

by Rod Smith pg. 122

Straight Talking
Battle of the Titans

by Alan Williamson pg. 16

SYS-CON Radio
Interview with Paul
Lipton of Computer
Associates pg. 36

Product Reviews
Progress SonicMQ pg. 42

JProbe ServerSide
Suite, V 2.5 pg. 50

Programming Techniques
What’s Going On with

Your Downloads?
by Alexandre Lemieux pg. 28

Announcing...

See page 77 for details

Presentation
& Interaction

Business Objects Data

1 2 3

Controller Stopped state

U
nr

ea
liz

ed

R
ea

liz
in

g

R
ea

liz
ed

Pr
ef

et
ch

in
g

Pr
ef

et
ch

ed

St
ar

te
d

St
at

e

0 15 15 20 20 800

Start Stop Start

Media Time

TimeBase Time

Stop Start Stop

0 15 20 25 40 800

SchemeTcl

Python

Smalltalk Java

Statically
Typed

Dynamically
Typed

C++\C

BeanShell

Bistro

JVM1 JVM1

Load Balancer

HTTP
Request

Container
Process

Interception

Web
Server

Servlet
Instance

Servlet
Instance

Servlet
Instance

Servlet
InstanceNetwork

level
requests

and
esponses

R
e

q
u

e
s
t/

re
s
p

o
n

s
e

m
a

rs
h

a
lin

g

a
n

d

u
n

m
a

rs
h

a
lin

g

R
e

q
u

e
s
t

m
a

p
p

in
g

S
e

rv
le

t
e

n
v
ir

o
n

m
e

n
t

s
e

tu
p

In
s
ta

n
c

e

a
n

d
 t

h
re

a
d

m

a
n

a
g

e
m

e
n

t

init
service
destroy

Tests

Generic Test Console

Test
Client

Interfa
Descript

reply/exceptio

connect

read

invoke method

set/get attribute

G
eneratereco

rd

repla
y

connect: stock_exchange
 Invoke: buy
-> symbol: SEGU
-> amount: 1000
<- confirmation:

by
Peter Kobak

see page 8

Java COM

2 FEBRUARY 2000

BEA
www.beasys.com

3FEBRUARY 2000

Java COM

Protoview
www.protoview.com

Java COM

4 FEBRUARY 2000

KL Group
www.klgroup.com

5FEBRUARY 2000

Java COM

SEAN RHODY, EDITOR-IN-CHIEF

Y
ech. I hate that title as much as you do, but it stuck in my brain and I
can’t get it out. Things are going on in the industry, and I think this is
an appropriate time to cover them. We were at the Java Business Con-
ference in December, covering what appeared to be more of a non-

event than a true exposition. Probably the biggest disappointment was Sun’s backing out of
the standards process for Java. Alan Williamson’s column goes into detail on that, expressing
the feelings of many in the industry that were upset by this move. While the little guys were
understandably upset, it’s the big players that were really hurt. IBM in particular has made a
large investment in Java, and has been looking to participate in the development of the lan-
guage on more of a peer basis than this turn of events allows.

There have been other happenings in the field as well. Not one but two start-up EJB-based
product companies have been acquired by larger corporations in the past few months. On the
West Coast Ariba purchased Trading Dynamics for about $400M. And here in the East BEA
purchased the Theory Center for about $100M. Trading Dynamics makes sophisticated auc-
tion software, which is EJB compliant and runs on WebLogic. The Theory Center makes a
component development framework for WebLogic, and coincidentally has a set of vertical
components that support a business-to-consumer type of auction.

Clearly, one of the hottest markets at the moment is exchange enablement. Exchanges, be
they business to consumer, like eBay or Priceline.com, or business to business, such as
Chematch.com or eSteel, are the focus of both the venture capital industry and the large-scale
consulting practices. Egged on by the success of eBay, a large number of companies are com-
peting to change the way consumers and businesses interact.

Several other significant events happened recently too. BEA and Warburg-Pinkus, which was
an original investor in BEA and still owns a good part of it, combined to create a new, as yet
unnamed company to develop software tools for the industry. The company’s first act? To pur-
chase VisualCafé from Symantec. I spoke with Joe Menard, president of BEA’s E-Commerce Serv-
er division shortly after this was announced. They see this as a way to further integrate tools into
J2EE – tools that will make it easier for everyone to develop distributed applications.

Interestingly enough, Persistence Software picked this moment to engage in
a lawsuit with the Object People over Persistence’s patents regarding
object-relational mapping. I spoke with two Persistence VPs at the
show, and the company is keen on protecting what it regards as a clear
differentiator in the EJB marketplace.

Where’s all of this headed? People have been telling the server compa-
nies two things lately – the products are what we want, but they’re too
hard to use. At the lower end you see products like ColdFusion and Silver-
Stream taking away business from the EJB servers. These products are easy
to use and fairly powerful in their own right, but they don’t pack the wallop
of a WebLogic, a WebSphere or a PowerTier.

Additionally, people – particularly start-ups – are looking for a much higher degree of verti-
cal integration than previously offered. They don’t want products, they want solutions, like
Trading Dynamics.

It’s going to come down to who offers the best set of tools and integration. IBM has a head
start with hardware, software, database and development tools. BEA is quickly making up for
lost ground and is buying everyone in sight. Persistence just announced an exchange package
called Sold.

The first age of EJB is now over. In the beginning, there was plenty of room for everyone, and
anyone could build a server. We’re now in a consolidation phase. Expect to see plenty of work
on integrating the presentation layer – JSP, JHTML and the like – into the business logic layer,
and making it easy to work with via enhanced IDEs. I also expect there to be fewer server ven-
dors this time next year. To BEA or not to BEA, that is the question.

F R O M T H E E D I T O R

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSOCIATE EDITOR: NANCY VALENTINE
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
LINDEN DECARMO, RICK HIGHTOWER, THOMAS KERN, PETER KOBAK,
ALEXANDRE LEMIEUX, GABOR LIPTAK, DAVID LYONS, JIM MILBERY,
GEORGE PAOLINI, PAT PETERNOSTRO, TONY PATTON, SEAN RHODY,
AJIT SAGAR, TODD SCALLAN, ROD SMITH, A.V.B. SUBRAHMANYAM,

JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
CHIEF FINANCIAL OFFICER: IGNACIO ARELLANO
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

WEBMASTER: ROBERT DIAMOND
WEB EDITOR: BARD DEMA

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: DIGANT B. DAVE

CUSTOMER SERVICE: SIAN O’GORMAN
ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)

is published monthly (12 times a year) for $49.00 by
SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Periodicals Postage rates are paid at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

sean@sys-con.com
AUTHOR BIO

Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation
where he specilaizes in application architecture – particularly distributed systems.

To BEA or Not to BEA

Java COM

6 FEBRUARY 2000

Together Soft
www.togethersoft.com

7FEBRUARY 2000

Java COM

Soft-
Wired

www.javamessaging.com/ibus

For many years I was the world’s greatest parent. Then I had kids.
Before my kids were born, I knew all the answers to successful child-rearing. And as the self-

appointed expert I was quick to impart my wisdom to friends and family. Things sure were sim-
pler then, and best of all I never made mistakes.

It was while observing one of my precious progeny (the little tyke pouring gravy on the dog’s head dur-
ing the Thanksgiving dinner at Aunt Mimi’s) that I had to face the fact that I had a lot to learn. Successful
parenting, I came to realize, is a lot of trial and error and a whole lot harder in practice than in theory.

I think of this lesson in humility every time I pick up a trade magazine these days. In there,
somewhere, I can easily find the latest unsolicited advice to Sun. Every industry pundit knows
exactly what Sun should do to standardize Java; every executive with a vice president’s title knows
just what to do to make Java more “open.” And if Sun would heed their advice, Java would be saved
and we might just cure cancer in the process.

Maybe it’s worth digging out the Baby Book and looking back four years, when Java was in its
infancy. Let’s frame the era. The Web is just starting to take off and there are a number of projects,
all of them competing in the same space as Java: Smalltalk, Inferno and ActiveX. Some people
actually believe VRML is the hottest thing going. Others are betting that Netscape can deliver a
robust set of APIs on which to build network applications.

Zoom ahead four Internet years. Which one of those little toddlers has grown up to be class
president? Well, let’s look in the yearbook and see which can claim credit for:
• A platform with 2 million active programmers
• A book industry unto itself
• The default computing environment taught in college computer science classes
• A software environment used by virtually every Fortune 1000 company
• A software environment employed by technology vendors from smart cards to the data center

So how did we get from there to here? We did it by making lots of mistakes. Shepherding a tech-
nology, it turns out, has some things in common with parenting. It requires some give and take. It
requires a lot of trial and error. It requires patience, tenacity and the unflappable belief that your
“kid” has what it takes.

Along the way those mistakes led to a pretty unique process for building, evolving and dissem-
inating a technology that began as a language, a VM and a few core class libraries, and it has
matured to a full, robust platform for distributed, network computing.

To be sure, we didn’t do it alone. It takes a village to raise a child, and it takes an entire industry
to groom a technology as important as Java.

What began as an informal process for collaboration on the Java technology has been formal-
ized in what we call the Java Community Process. Along the way, in four short years, the Java com-
munity has developed over 80 new interfaces.

All well and good, you say. But Java is grown up now and it’s time to let go. Make it open.
The term open is bandied about these days and associated with lots of technologies. But what

does it mean for a technology to be open? To my mind it must possess at least three qualities:
1. The specifications must be published.
2. The source code must be accessible.
3. There must be a process for allowing the community to innovate on the source base.

And to ensure that this technology has a practical purpose within the business world, we added
a fourth requirement:
4. Any modifications to the source base must pass compatibility testing.

With these four steps we can ensure innovation while maintaining compatibility. Java meets these
criteria, hands down, and that’s why, to my mind, the technology has achieved such overwhelming
success. It provides a stable base for the millions of developers such as you to innovate upon.

WRITTEN BY GEORGE PAOLINI
I M H O

AUTHOR BIO
George Paolini, vice president of marketing of Software Products and Platforms at Sun Microsystems, is responsible for managing all public relations,
Internet, strategic and technical marketing branding, and trade shows and events within that business unit. George is also a member of the Java
Developer’s Journal Editorial Board.

george.paolini@sun.com

—continued on page 86

Refining the Process

8 FEBRUARY 2000

Java COM

With the release of the Java 2 Platform, Enterprise Edition, Java-
based Web application servers are gaining in popularity. Although appli-
cation servers have been around for a few years, they forced programmers
to be tied to a proprietary API. Support of J2EE by application server ven-
dors standardizes the API we write to, easing training, staffing and support
costs. Perhaps most important in our dynamic Web vendor environment,
writing code to an industry standard reduces the huge risk a customer
takes in choosing a particular vendor should that vendor disappear.

In this article I’ll explain the basics of Java servlet sessions and why
careful monitoring of your sessions will be important in a large site using
multiple application servers. Then I’ll present a simple utility to check
your servlet sessions.

Application Servers
What is a Web “application server”? Although many full-fledged Web appli-

cations have been written using a Web server with cgi-bins, most are written
using C or Perl. The cgi-bins typically contained display and business logic
and talked to back-end processors and databases via proprietary interfaces
(see Figure 1). This works fine for simple applications with low traffic, but
when traffic increases or pages need to be redesigned, the situation gets ugly.

Unless it was designed with saintlike attention to isolation and modularity, a
page change, database change or business logic change ripples through all
parts of the application. More important, as traffic goes up, more and more
code must be dedicated to resource management: database connection
management to keep the database from getting swamped, thread or process
control to keep the Web server from thrashing, and load distribution to han-
dle volume. Sound scary? Ask anyone who’s had to maintain an older site for
a few years using only a C compiler.

Application servers help reduce the housekeeping and management
burdens, allowing developers to concentrate on the application itself.
On the presentation layer a page layout mechanism enables the use of
templates to insert data in dynamic pages. A transaction monitor allows
you to manage the sequence of transactions, roll back across heteroge-
neous databases, use a connection pool and access a common API to
address different databases. Business logic modularity is supported
through formal mechanisms. Automatic caching is available for data-
base resultsets and HTML pages. Across it all are management functions
to perform load balancing and distribution among threads, to make full
use of available processors and to allow for graceful degradation under
stress. The most serious application servers also support load balancing
or failover between servers.

J D J F E A T U R E

WRITTEN BY PETER KOBAK

9FEBRUARY 2000

Java COM

Java-based application servers perform these functions using a stan-
dard set of APIs (see Figure 2). Instead of learning the quirks of your ven-
dor’s API, you can rely on information from multiple sources and have
access to many resources – books, sites and newsgroups – not to men-
tion the fine magazine you’re reading now. You also avoid the sometimes
deadly vendor lock. Using a proprietary system is like locking yourself in
a jail cell; a standards-based system is similar, but you get to smuggle in
a hacksaw.

Although four layers are shown in the application server in Figure 2,
there’s nothing stopping you from skipping layers or using a more com-
plex pathway. For instance, you may find that for all their sophistication
EJBs are overkill. You may choose to go directly from a servlet to a JDBC
call. However, to get business-layer isolation you’ll probably want to use
a bean separate from servlet code. Also, it’s not uncommon to have a
chain of servlets to provide layered user data validation and transaction
control.

Presentation Layer
At the presentation layer, user data validation and HTML page con-

struction are accomplished with Java servlets and JavaServer Pages.
Servlets and JSPs, or a chain of them, can be invoked. A servlet is a sub-
class of the HttpServlet interface. The application server invokes a
method of your servlet through a mapping of URL nodes (see Figure 3 for
an example). An HttpRequest object is passed to the invoke() method of
your HttpServlet; HttpRequest contains everything that gets passed into
a cgi-bin and more, but with easier access. The request is examined and
processed, and your servlet returns a stream of HTML through another
parameter object.

Presentation
Layer

Business
Layer

Database
Layer

Business
and

Transaction
Layer

Database
(vendor A)

Database
(vendor B)

P
LU

G
-IN

Java Servlets
& Java-

Server Pages

APPLICATION SERVER

Legacy System

Browser

Internet

HTTP

Web
Server

JDBC
& JNDI

Java
Beans

Enterprise
JavaBeans

FIGURE 2 Java application server model

Database
(vendor A)

Database
(vendor B)

Database
Queries

Business
Logic

C
G

I-B
IN

Presentation
Logic

Legacy System

Browser

Web Server

Internet

Transaction
Logic

HTTP

HTTP
Server

FIGURE 1 Web server application model

TABLE 1 Bean lifetimes

LIFESPAN MEANING USAGE

Page Lives only during invocation Not too useful, but available if
of this JSP you love beans

Request Lives during current The bean can be used by other
HttpRequest JSPs, but is lost once control

returns from the initial invoke()

Session Lives in the HttpSession; Used to store information
continues to live between about the user or the user’s
requests transaction; a good place to

keep a shopping cart

Application Lives forever (that is, until Application-global information
the application or server is
rebooted)

Java COM

10 FEBRUARY 2000

JSPs allow you to mix servlet code with HTML, which gives you a nice
layout of static HTML with the dynamic bits placed as Java code. JSP
source is compiled into an HTML file and a Java file, but the application
server does it for you. Some servers even recompile on the fly, recogniz-
ing a change to JSP source and doing all the compiling and class reload-
ing automatically (pretty slick). JSPs can do most things a servlet can,
and in addition support JavaBeans.

You probably know about beans, but for the purpose of JSPs, the
only important rule to follow is the coding pattern of using getProp-
erty() and setProperty() methods – where “Property” is a bean proper-
ty name that’s usually just a field of the bean class. Since arbitrary Java
code can be executed in a JSP, a bean can be used just by invoking it as
a class in the usual way. Beyond this, though, there’s support for
beans. You can create and use a bean for a period that extends beyond
the life of the current request (see Table 1). There’s also a JSP syntax to
set and get bean properties, although standard Java syntax works just
as well.

Typically, the beans invoked from a JSP contain your business logic,
and directly or indirectly invoke back-end systems and databases. Even
if your logic is simple, you’re better off minimizing the amount of Java in
a JSP. Think of a JSP’s Java code as performing just enough logic to invoke
business beans. The beans do their work, then the JSP extracts bean
properties to put data on the HTML page.

Sessions
An HttpSession object is part of the HttpRequest object passed to a

servlet or JSP; HttpSession is the easy way to have data associated with a
user (actually the user’s browser). Behind the scenes, the application
server uses cookies or URL encoding to indirectly store the data. This is
probably nothing new to you; cookies or URL codes are the only way to
store data on the browser so it gets returned to the server on subsequent
HTTP requests. The friendliness of HttpSession is twofold. First, you
don’t have to think about cookies or URLs since the server does that dirty
work for you. In fact, some servers will try to use cookies and if they can’t
(if they’re not accepted by the browser, for instance), the server will
attempt to use URL rewriting instead. Second, the application data is
stored on the server, not the browser. The cookie data is merely a key to
finding the session data. This gives you a good measure of security for

your data as well as freeing you (mostly) from the space constraints of
storing data directly in a cookie.

You can store an object in a session by invoking a method of HttpSes-
sion and giving the object a name. On the same or subsequent requests,
invoking a get method with the object’s name can retrieve the object. A
servlet accesses the HttpSession directly. A JSP can also use the session
directly but, as you probably guessed, a bean stored with a “session” life-
time is stored into and retrieved from the HttpSession for you.

Distributing Servlet Sessions
If you buy a big, serious Java application server, one of the features

your money buys is load balancing and failover mechanisms. Within a
server box, your app server package is expected to partition work among
available resources as efficiently as possible. Among other things, that
means clever distribution of work between available CPUs and pooling
connections to back-end systems.

Distributing fine-grained work between servers is even more clever.
However, if your application is supposed to work with a consistent
HttpSession, the session must be maintained on multiple servers (see
Figure 4). Application servers can have more than one policy for sharing
sessions, but it’s clear that if you need to have robust transactions (that
is, user transactions that can survive if a server goes down) your HttpSes-
sions must somehow be distributed to the peer server(s). Although it’s
technically possible for a server to implement distributed sessions with-
out using serialization, the serialization mechanism native to Java is the
obvious and simplest way for a server to distribute the data from the
objects living in the session. Even though the app server does the hard
work of enforcing session distribution policies, you have to make sure all
the objects you store into HttpSession are serializable.

Serializing Session Objects
If you’re not familiar with Java serialization, here’s a brief overview. For

more information, see the Javadoc for the serializable interface in the
standard JDK.

Serialization is at the core of several Java standards involving the
movement or storage of the object state outside of system memory. It’s a
powerful mechanism but simple to use. An object that implements the

HTTP request to port 80 of
www.mysite.com

Application server
examines request

MyApp is recognized as a
registered application

Class that implements MyServlet
is loaded and invoke() is called

Web server invokes plugin that
sends request to application server

www.mysite.com/IsaApp/MyApp/MyServlet

www.mysite.com/IsaApp/MyApp/MyServlet

www.mysite.com/IsaApp/MyApp/MyServlet

www.mysite.com/IsaApp/MyApp/MyServlet

FIGURE 3 URL decomposition

X

Request Page 1
of transaction

User begins transaction,
request happens to go

to app server 1

Web
Server

Application
Server 1

Application
Server 2

ht
tp

request
http request

Request Page 2
of transaction

Web
Server

Application
Server 2

http request

Receive Page 1
of transaction

Response to page 1
request and session

synchronization
between app servers

Application
Server 2

Application
Server 1

ht
tp

re
sponse

http response

Web
Server

Application
Server 1

HttpSession

User continues
transaction, but

request goes to app
server 2 because

server 1 is too busy
or is down

http request

FIGURE 4 Failover scenario

11FEBRUARY 2000

Java COM

Microsoft
www.microsoft.com

Java COM

12 FEBRUARY 2000

java.io.Serializable interface can have its state, and the state of all con-
stituent objects, written to a java.io.ObjectOutputStream. The object can
then be reconstituted by reading the same stream from an ObjectInput-
Stream. To allow an object to be serialized, a programmer need only
specify “implements Serializable” and be sure all constituent objects are
serializable (or primitive) as well. Notably, a programmer doesn’t need to
code any methods at all to support serialization. Just about any JDK class
you’d sensibly want to serialize already implements serialization.

Although it’s easy to mark an object as serializable, the subtle danger
is that it’s easy to forget to mark an object deep in a hierarchy. You’d learn
about the oversight only at runtime when ObjectOutputStream throws a
NotSerializableException, and then only if you’re vigilant. The size of a
serial stream can be difficult to predict for the same reason: it’s often not
surprising to find that a field of your object was set to an object pointing
to a large tree of objects. During serialization, you may find that the tree-
following serialization process dutifully saves a lot of data you don’t
actually need.

Session Monitor
I’ve written a simple HttpSession display utility that could be useful to

you in different ways, depending on where you are on the path toward
J2EE.
1. In a development environment, to monitor the size and structure of

objects stored in sessions, possibly by different development teams. This
was the original purpose of the utility.

2. To help study the composition of sessions while you’re experimenting and
learning. To that end, if you don’t want to buy a commercial app server yet
(for the price of a car), you can learn with the reference version of J2EE
generously made available from Sun at http://java.sun.com/j2ee.

3. To give you a simple example of a JSP working with a JavaBean. Also, it
demonstrates the power of manipulating classes as objects.

The JSP “SessionTester.jsp” is in Listing 1 and the worker bean “Ses-
sionTesterBean.java” is in Listing 2. In the JSP you can see how easily Java
and HTML are mixed. Note that “<%” … “%>” surrounds Java state-

ments, while “<%=” … “%>” surrounds a Java expression that’s convert-
ed to a string and inserted in the surrounding HTML. (I have to com-
ment how wonderful it was to start using JSP after building cgi-bins for
years in C. It was like emerging from a programmer’s gulag.)

It’s a stretch to call the SessionTesterBean class a bean. But the term
bean is an accurate way to differentiate an independent Java class in an
app server from a servlet or JSP. Plus, it sounds better than “Java worker
class.” The SessionTesterBean consists of a few static methods, one of
which is called from the JSP. Each value in the session is found, then
dumped by writing HTML to the “out” stream. Note the direct way I find
the serialized size of each session value object – I just write the object to
an ObjectOutputStream and find the number of bytes. I also check for
exceptions and report them, which helps find any nonserializable object
in your object tree.

Installing the utility can be different for every server vendor. Compile
the .java file with the compiler in your app server’s JDK. If necessary,
“compile” the .jsp file, although many app servers automatically recog-
nize, compile and install new JSPs. You have to put the .jsp file in a loca-
tion that allows the app server to invoke it with a URL, and you have to
put the .class file in a package directory, SessionTesterBeans, along the
CLASSPATH that’s active when the JSP is active. This may involve config-
uration efforts in your app server, but if you’ve already done some play-
ing with JSPs and beans, you probably already know where to install the
files in an existing configuration.

To use the utility, establish some HttpSession data in your own servlet
or JSP, then simply use the URL needed to invoke SessionTester.jsp. The
page returned shows a summary of the objects in the current session
along with their sizes. Pressing a button displays session parameters and
the composition of each object within it.

AUTHOR BIO
Peter Kobak is a technical lead for a major financial institution’s Web site. He’s currently part of a team
working to migrate the site from a proprietary application infrastructure to a Java-based application server.

<HTML>
<TITLE>Session Unit Tester</TITLE>
<H1>Session Unit Tester</H1>

Although caching is
turned off on this page, it is safer
to do a manual refresh to be sure the
most current
session is examined.

<%
//Turn off all browser caching
response.setHeader("pragma","no- cache");
response.setHeader("cache control","no");
response.setHeader("expires","0");

HttpSession session =
request.getSession(false);

if (session != null)
{

boolean fDeep =
request.getParameter("De-
tails") != null;

String buttonName = fDeep ?
"VALUE=\"Hide Details\"" :
"NAME=\"Details\" "+

"VALUE=\"Show Details\"";
%>
<FORM METHOD="GET">

<INPUT TYPE="SUBMIT" <%= button-
Name%> >
</FORM>
<%

SessionTesterBeans.SessionTesterBean.

dumpSession(session, out, fDeep);
}
else
{

%>

<H3>Couldn't get a session :-(</H3>

Suggestions for getting a session:
Hit the refresh button.
Make sure you have a session in
your application; it may have expired.
Try to start a new session in your
application.

Check the application's session
configuration.

<%
} // end else

%>

</HTML>

package SessionTesterBeans;

import java.beans.*;
import java.util.*;
import java.text.*;
import java.io.*;
import java.lang.reflect.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.beans.*;
import java.util.Date;

/**
* A set of static methods to test and
* dump servlet sessions. Normally to be
* used from SessionTester.jsp, but can
* also be used from the command line
* (see main()) or by calling these
* methods directly.
* <P>
* All dumping methods accept an object
* and an output stream.
* The display of the object is created
* as HTML and written to the stream.
*/
public class SessionTesterBean {

// don't display property values longer
// than this
static final int MAX_DISPLAYABLE_STRING = 100;

// time format used by epochTimeToString()
static final SimpleDateFormat myDateFormat =

new SimpleDateFormat("HH:mm:ss.SSS
'on' "+
"MM/dd/yyyy");

/**
* Diplays the content of a session,
* including indentification of
* each object stored in the session.
* If fDeep is true, each such object
* is also displayed using dumpSerializ-
* able() and dumpBean() in this class.
* @param session Session to be dis-
* played.
* @param out The stream to which HTML

Listing 2

Listing 1

kobak@ieee.org

13FEBRUARY 2000

Java COM

Microsoft
www.microsoft.com

Java COM

14 FEBRUARY 2000

* is written.
* @param fDeep True to perform a dump
* of each session object.
*/
public static void
dumpSession(HttpSession session,

PrintWriter out,
boolean fDeep)

{
if (session == null) {

out.println("
Null session
passed to "+

"SessionUnitTester.dumpSes-
sion()");

return;
}

if (fDeep) {
out.println("
Current time: " +

myDateFormat.format(new Date()));
out.println("
Access time: " +

myDateFormat.format(new Date(
session.getCreationTime())));

out.println("
Creation time: " +
myDateFormat.format(new Date(

session.getLastAccessed-
Time())));

out.println("
session id: " +
session.getId());

out.println("
timeout: " +
session.getMaxInactiveInterval());

out.println("
new: " +
session.isNew());

}

String[] names = session.getValue-
Names();
out.println("<P>Found "+

names.length +
" session
objects:");

Object sessObj;
int totalObjSize = 0;

for (int i = 0; i < names.length; ++i) {
out.println("<P>" + names[i]);
sessObj = session.getValue(names[i]);
if (sessObj == null) {

out.println(
"
Can't get this ses-
sion "+

"object." +
" Possibly non-Serializ-

able.");
}
else {

totalObjSize +=
dumpSerializable(sessObj,

out,
fDeep);

/* Bean dumping code that's
/* too long to show in this
/* article

if (fDeep) {
dumpBean(sessObj, out);

}
*/

}
}
out.println(

"Total size of session
objects = " +

totalObjSize + "
");
}

/**
* Displays a (supposedly) Serializable
* object by attempting to write the
* object to determine if the object is
* serializable, and if so, how big

* the object is. If fDeep is true, dis-
* plays the name of each field in the
* class.
* <P>The purpose of this display is to
* assist the developer in determining
* if an object can be serialized in a
* servlet session, and to report the
* size and composition of the object
* so it can be controlled at an early
* stage in the development process.
* @param sessObj An object to be dis-
* played.
* Although Serializable objects
* are expected, any object can
* be used.
* Non-serializable objects
* (including non-serializable
* objects embedded in
* sessObj) will be reported as
* such.
* @param out The stream to which HTML
* is written.
* @param fDeep True to display the
* fields of the object.
* @return Serialized size of sessObj
* (zero if couldn't be serialized).
*/
public static int
dumpSerializable(Object sessObj,

PrintWriter out,
boolean fDeep)

{
if (sessObj == null) {

out.println("
Null object
passed to "+

"SessionUnitTester.dumpSerial-
izable()");

return 0;
}

Class sessClass = sessObj.get-
Class();
out.println("
Class name = "+

sessClass.getName()
+"
");

int sessObjSize = 0;

try {
ByteArrayOutputStream baSessStrm

=
new ByteArrayOutputStream();

ObjectOutputStream objSessStrm =
new ObjectOutputStream(
baSessStrm);

objSessStrm.writeObject(sessObj);
objSessStrm.close();
sessObjSize = baSessStrm.size();
out.println("Serialized size = "+

sessObjSize);
}
catch (Exception xcpt) {

if (xcpt instanceof
NotSerializableException) {

out.println("This object
is not "+
"serializ-
able.
");

}
out.println("While attempting to "+

"serialize, this
exception "+
"occurred:
");

xcpt.printStackTrace(out);
}

if (fDeep && !(sessClass.isInterface() ||
sessClass.isPrimitive() ||
sessClass.isArray()

)) {
Field[] fields =

sessClass.getDeclaredFields();

if (fields.length > 0) {
out.println("<P>found "+

fields.length +
" object
fields:");

for (int ifield = 0;
ifield < fields.length;
++ifield) {

out.println("" +
fields[ifield].to-
String());

}
out.println("");

}
else {

out.println(
"<P>no object fields found");

}
}

return sessObjSize;
}

/**
* Stand-alone test for an object.
* The program argument is the name of a
* class.
* If the class can be loaded and an
* object created, that object is dis-
* played (with
* HTML tags) using dumpSerializ-
* able.
*/
public static void main(String[] args
)
{

PrintWriter out =
new PrintWriter(System.out);

out.println("Argument is name of
class to "+
"test for session
properties.");

if (args.length == 1) {
final String testClassName =
args[0];
try {

Class testClass =
Class.forName(testClass-
Name);

Object testObject =
testClass.newInstance();

dumpSerializable(testObject, out,
true);

}
catch (Exception xcpt) {

out.println(
"Couldn't create an
instance of "+
testClassName);

xcpt.printStackTrace(out);
}

}
out.flush();

}

} // end class SessionTesterBean

15FEBRUARY 2000

Java COM

Microsoft
www.microsoft.com

December saw me in New York, host-
ing SYS-CON Radio with my esteemed
colleague, Keith Douglas, at the Java
Business Conference. We conducted a
marathon of radio interviews, talking to
a vast array of different companies from
all over the planet. Well, I say planet, but
let’s be honest: the majority of them
came from the inner sanctum of the Val-
ley. I guess that’s still the place to go if
you intend running a tech-based com-
pany. That said, many observations were
made at the show, so let me share some
of them with you.

One of the more comical phrases I
heard was that this was the East Coast
version of JavaOne. Ha! Wishful thinking,
methinks. For a start, there simply wasn’t
the number of people. Hardly anyone
turned up. After the show ended, we got
to talking to one of the ZD-Net confer-
ence organizers, who shall remain
nameless, but she said that it was a big
disappointment all around…nowhere
near the expected number of people
turned out. So why the low footfall?

A variety of possible reasons were dis-
cussed. One was oversaturation. An
XML show was hosted in the
same week, while a week
later an e-commerce
show was going to be
held in the same venue.
People simply can’t
attend them all. I think
that’s definitely a con-
tributing factor, but per-
sonally I think it’s all gotten
rather….The pizazz of the
Java revolution is beginning
to wane. I think people are
getting bored – and you know
what? I don’t blame them.

We spent a whole week talking,
listening, interviewing and generally
networking with companies from
all walks of the industry. But
none of them had anything
exciting. I’m sorry if that sounds
harsh, but compared to the
JavaOnes of yore, no compa-
ny had anything exciting or
remotely cool to show off. I’m
sure I’m going to get a whole
raft of e-mails from compa-

nies complaining that this is a bit dra-
matic, but I’m sticking to what I said.
Any company that makes an applica-
tion server or virtual machine need not
apply. I guess that wipes out the major-
ity of complaints!

Seriously, talk about jumping on a
bandwagon. Everyone and their dog
seem to be producing an application
server. Okay, chaps, I think the market is
saturated enough now, so if you’re on
the verge of announcing a new applica-
tion server, save it. The world doesn’t
need it. Have you seen the number of
solutions available? It’s madness. The
only reason I think we’re seeing a serious
surge in this new market is money.

Java-based companies are finding it
increasingly difficult to make money.
Application servers are the only way
they feel they can place high-ticket
price tags on pieces of software. In an
industry that’s hell-bent on giving away
software, the justification to charge for
it is becoming increasingly hard. The
reality is that we’re in this game to make
money, and “free” simply doesn’t pay
the rent.

This leads me to my next observa-
tion regarding a company and an

individual that I think are letting us
all down. Oh, but that reminds
me. Let me thank those of you

who came up to me and expressed
kindness regarding this column.

It was much appreciated. That
said, would you believe I was
accused by one gentleman of

becoming soft? Soft? I ask
you. He commented that of

late I hadn’t attacked any com-
pany. Well, for the record, this is

something I don’t do just
to fill column space. If a
company is in the
wrong, I merely bring it
to the attention of the
world at large. If a com-

pany has done well, I do
the same thing. It’s just

that people always seem
to remember the bad

news as opposed to the
praise. Funny how human

nature works.

But let me give the companies of this
industry advance warning: I’m a’comin’ to
get you. We’re about to conduct a major
test of the support this industry provides.
We’ll contact all the big names and some
of the smaller ones, asking for help on
their products. Don’t worry. We won’t be
using our real names – wouldn’t want you
giving me any special treatment just
because I’m a JDJ columnist. That would-
n’t be fair to the normal developer. It’ll be
very revealing, and the good news is that
you’ll be able to hear some of the more
interesting help through our Straight Talk-
ing radio show. Each month I’ll update
you on our findings. Our aim is to raise the
standard of support in the Java world.

Okay, now that I’ve given you advance
warning, back to the thread of conversa-
tion we were on before I drifted.

As you know, pre-Christmas ’99 we had
a major falling out of two of the largest
companies in the Java industry, Sun and
IBM. A severe case of toys being thrown
out of the pram and storming off in a huff,
taking all the toys with them. Sun may be
playing a dangerous game, and may
already be alienating developers.

Battle of the Titans

WRITTEN BY
ALAN WILLIAMSON

Java COM

16 FEBRUARY 2000

W
elcome one and all to this month’s dose of nonsense and trivia from the world
of Java. December was a rather fun-filled month, with many things happening
that will affect us all in the near future. I’m sure you’ve all heard about the con-
troversy with Sun and IBM. But more on that later. Can’t be getting into heavy
stuff this early on. I have to ease myself into it gently!

Talk about jump-

ing on a bandwag-

on. Everyone and

their dog seem to

be producing an

application server

‘‘

’’

17FEBRUARY 2000

Java COM

Hit Software
www.hit.com

A Bit of Background
Essentially, there was a move to have

Java’s future controlled by a consortium
of companies as opposed to just one,
Sun. IBM was a major player in this con-
sortium, and was keen to move forward
with this. Sun, however, became increas-
ingly nervous, and one week into
December said they would be pulling
out of this initiative. IBM retaliated by
announcing that there may be a version
of Java that may not be compatible with
the present one. A threat if ever I heard
one. Sun then threw out the fact that 80%
of the existing Java is tied up in legal
copyright. But that leaves 20% that isn’t.
It takes only 1% for it to become non-
compatible. A scary state of affairs, if you
ask me.

At the time of this writing the position
of the companies hadn’t changed. I spoke
to an IBM’er close to the action who stat-
ed that IBM didn’t want to see more stan-
dards/names for Java. The latest Java
Enterprise Edition hasn’t impressed IBM,
and they feel it’s a step too far. I tend to
agree with them. The whole version-
numbering of Java has simply gotten out
of hand, and something needs to be
done. We have Java 2.0, but the actual
release is 1.3. Talk about introducing con-
fusion into an already version-happy
world. Sun…sort it out.

So Sun doesn’t want to relinquish
control of Java. They want to control it
all themselves, and want us to believe
that it’s in everyone’s best interest to
allow them to continue. Gee, this
sounds familiar. Ring any bells?

The man who may have lost the
respect of the development community
is Scott McNealy. For a while he was the
developer’s friend, speaking out against
the empire we all love to hate and giving
us the resources to allow us to fight the
onslaught of Microsoft. But he’s gone
and buggered up his power base by
showing his true colors, which ironically
seem to be the same shade as Mr.
Gates’s.

McNealy is famous for slandering
Microsoft in his keynotes, and his con-
stant attack on all things Gates was
beginning to get boring. But from a man
who once retorted he probably wouldn’t
do anything different if he were in Bill
Gates’s shoes, it looks as though he’s set-
ting himself up for this sort of power
base. McNealy may end up as a man no
longer to be trusted, and Java may no
longer be safe in his hands. Let me illus-
trate why.

For years people have asked where
Sun was making its money, and for years
the standard answer was “from the sale
of its servers.” People were led to believe

that Java would run faster on a Sun serv-
er than any other, so they’d flock to Sun,
leaving other server manufacturers out
in the cold. If you’ve read the recent Sun
book, you know this was the plan back
in the beginning. Didn’t quite work out
like that. For a start, Sun’s servers didn’t
outperform the competition in quite the
way Sun had hoped. Also, the virtual
machines offered by other vendors
knocked the spots off Sun’s own offering.
So the original plan to make money
from the sale of servers wasn’t working
out. Sun needed an income from Java.

Well, here’s an idea. Since you control
the fate of Java, why don’t you charge
people for using the name in their prod-
ucts? Nah, that would be like charging
for the use of the word Internet in every
product. Silly. Sound ridiculous? Well,
guess what? That’s what McNealy is
doing. Yup, if you have a product that’s
compliant with the J2EE API, then you
owe Mr. McNealy 3% of your profits. Tip
of the iceberg. What else is Sun going to
charge for? One cent for every download
of your applet? As bizarre as that sounds,
it’s heading that way.

McNealy has gone and done the one
thing he said he’d never do, and that is to
charge for Java. If IBM plays this right,
they could become the developer’s new
champion and take on a new version of
Java that’s both open and free.

I never thought I’d be throwing my
support behind Big Blue, but Sun has
lost my respect and they’ll have to do an
awful lot to get it back again. For a start,
I no longer trust what McNealy tells me.
They don’t want to share the develop-
ment of Java, and their belief that they’re
the only ones that can really do it justice

will be Java’s downfall. What I’d love to
see is companies releasing products that
are only 97% compatible – where the 3%
is lost since they don’t want to pay royal-
ties on the use of a name.

Mailing List
With that I move on to the mailing list

that’s based on this column. We’ve been
discussing this very subject in depth,
and no one has posted any mail that
supports Sun’s stance. All have stated
their feellings about what Scott McNealy
is up to. It’s good to hear your views on
this and other topics of interest. Keep
them coming and let us know what you
think. I’d like to point out that we have a
new list server in place, which means
that the directions for signing up that
I’ve given out in previous columns are
no longer valid. We have a new Web-
based system that makes it easier for
everyone. Point your browser toward
the URL http://listserv.n-ary.com/mail-
man/listinfo/straight_talking for all the
details. It’s easy and very quick. I look
forward to hearing from you.

Alternatively, if you want to hear from
me, then head along to http://radio.sys-
con.com/ to hear the daily Straight
Talking radio show. It’s a mix of Java
chat, music and a bit of insight into all
sorts of useless and interesting trivia.

Salute of the Month
This month the salute goes to Bruno

Decaudin and the SYS-CON Radio pro-
duction team, who turned the interview
sessions into one slick, well-oiled opera-
tion. Keith and I thank you for your
efforts – we thoroughly enjoyed having
you as part of the team and look forward
to working with you at JavaOne.

• • •
On that note I’d better wind up this

month’s installment. The good news is
that I think my Dolly Parton phase is
weakening. I can’t be too sure though,
as I recently took delivery of a portable
MP3 player, which means that Miss
Parton goes with me to the gym as I
continue my quest for the body beauti-
ful. Oh dear, maybe I still have a long
way to go!

AUTHOR BIO
Alan Williamson is CEO of n-ary (consulting) Ltd, the first
pure Java company in the United Kingdom.The firm, which
specializes solely in Java at the server side, has offices in
Scotland, England and Australia. Alan is the author of two
Java servlet books, and contributed to the Servlet API. He
has a Web site at www.n-ary.com.

Java COM

18 FEBRUARY 2000

The whole

version-numbering

of Java has simply

gotten out of hand,

and something

needs to be done

‘‘

’’

alan@sys-con.com

19FEBRUARY 2000

Java COM

Segue
www.segue.com

Java COM

20 FEBRUARY 2000

J D J F E A T U R E

JavaServer Pages (JSP), an API layer that extends the

servlet architect, provide developers with a standard for creating template-

based HTML applications. The JSP specification marries scripting tags and Java

code in an HTML template with nonvisual JavaBeans and servlets running in the

JSP/servlet engine. It provides a flexible solution that caters to Web developers who use a script-

ing approach with display logic embedded in a Web page and application developers who prefer to

separate the HTML from the controlling logic by using a component-driven approach.

This article shows how to build JSP applications using a component-based framework. By leveraging nonvisual

JavaBean components, the Java event model and a bean-aware IDE, I’ll demonstrate how you can realize many of the

rapid development advantages of component development without having to use an application server-specific IDE and API.

How to implement a JSP component-based
framework by applying application server techniques

WRITTEN BY DAVID LYONS

21FEBRUARY 2000

Java COM

HTML,Application Servers and JSP
Before JSP, application server vendors created their own server-side

API to display HTML Web pages. Using products such as Sun NetDy-
namics, SilverStream and Bluestone Web/Sapphire, developers can cre-
ate a containment hierarchy of controls, set properties via property
sheets and bind the controls to a database. Tags corresponding to their
controls are then inserted into the HTML and used during the rendering
process. Vendors developed some productive approaches to this process
(they also provided input to the JSP specification); however, each vendor
developed a different approach. This is now a problem since the pro-
ductivity resulted from using the vendor’s own API, which, of course, ran
only on that vendor’s server. The approach discussed in this article isn’t
very different from the vendors’. However, we’re using commonly avail-
able tools and leveraging existing standards to improve productivity
while creating a portable framework across JSP implementations.

Application server vendors are now beginning to support JSP – a good
development. The products already provide most of the enterprise ser-
vices needed by the JSP presentation layer. Yet base-level support of JSP
differs from productive JSP support. In many of these products produc-
tive support in the form of IDE enhancements and API extensions is six
months to a year away. In the meantime, you can start leveraging JSP
productivity today while the vendors work toward more comprehensive
solutions that differentiate their products.

Before We Begin
I’ll now show what you can currently build using the tools you already

own (or that are readily available). The code is limited in scope, func-
tionality and error checking. In other words, don’t try this in production!

First we’ll build a JSP framework, which will consist of several Java-
Beans and base classes for our application. Next we’ll create a small Web
application (one page) that uses the framework and beans to build the
display of a JSP page. To further limit the scope of the code in demoland,
we won’t connect to a database or an EJB (Enterprise JavaBean) even
though we would in the real world. For now we’ll focus on the display
aspects of a page. Most (though not all) of the code is given at the end of
this article. The complete source is located on SYS-CON’s Web site at
www.JavaDevelopersJournal.com.

Using Components with JSP
Our JavaBeans components will encapsulate display aspects of HTML or

XML tags. These tag components will reside on a JavaBeans palette in your
IDE just like visual Swing JavaBeans components. Our beans will comprise
HTML tags such as an input button, input text or just static HTML text. The
framework is extendible, so all types of data-driven, text-based objects can
be built. Does using a component-based approach sound vaguely familiar?
It should. Although developing component-based JSP applications is simi-
lar to developing client-side JavaBean applications, there are several major
differences. One example is event flow. In applets and applications, user
actions can occur in varying sequences. In JSP/HTML applications the set
of options is more defined; once the user chooses an action, the display
process is a controlled event flow or batch process as the display of the page
follows a predictable order of events. On demand, our tag components will
“render” themselves using their properties and data. Our tags will also fire
Java events during the rendering process to provide “user exits” for devel-
opers to add code that dynamically changes the runtime display. This pro-
vides a flexible architecture that the developer can exploit for Web pages
with complex display logic and business rules.

JSP Scopes and the Framework
An important part of JSP and servlet development is knowing the thread

safety rules for each JSP scope. JavaBeans can be instantiated in different
scopes ranging from page scope (local to a page rendering) to application
scope (global to all JSPs and servlets in an application). The JSPs in this

article create page scope beans. This means bean instance variables are
okay because the bean itself is local to a single page rendering. While page
scope eliminates thread-safety concerns, heavy use of page-scope objects
also creates more overhead and drags down performance.

Fortunately, the JSP framework developer can choose one of two
approaches when using a framework such as this in a wider scope with-
out making life harder for the JSP application developer. The first
approach is object pooling of the beans. Application servers such as Sun
NetDynamics use this technique extensively to limit the creation of new
objects while serving a large number of concurrent users. The concept is
the same as database connection pooling in which an instance is
checked out, utilized, then checked back into the pool. The second
approach separates the framework into two sets of classes: lighter-
weight property objects created in a page scope that contain variable
data specific to each page, and corresponding application scope objects
that contain design-time property settings and methods that operate on
the data. Again, our objects will be page scope objects so these measures
aren’t needed but I did want to address this important issue.

First Up, Events and Listeners
First we’ll define the events the DataTag bean can fire. For example, the

bean could fire a preDataFetch event to allow a developer to set some
defaults before data is received. In another case a preHtmlOutput event
that enables a developer to change the completed tag before display
could be fired, or he or she could decide not to display if the current user
has inadequate security. Since we’re working with JavaBean components,
many IDEs will recognize the events and provide visual support for easi-
ly adding them to our source code. This speeds development while pro-
viding structure to our process. For this article we’ll define one event, for-
matOutputProperties, that fires when we’re ready to add formatting to
our display value. For example, we may want to format a date or add a
currency format to our value. See Listing 1 for the event and listener code.

Creating a DataAdapter Class
Next, we’ll define a DataAdapter class. This wrapper class retrieves

values from an instance (or member) field and provides the value to the
DataTag. The DataAdapter concept can become quite flexible, and sub-
classes could support access to JDBC resultsets and EJB components.
For now we’ll keep our class simple and support only single-value and
array objects that use the toString() method to convert their values to
string format. Wrapping an object is completed by simply passing it via
the appropriate constructor. The adapter then returns values as request-
ed, using getValue() methods. The method signatures are shown below.
See Listing 2 for the complete source.

Public DataAdapter(

Object value)

Public DataAdapter(

Object[] value)

Public Object getValue()

Public Object getValue(

int Index)

Adding the DataTag Class
Now we’re ready to define the DataTag. This is the core class in the

framework. It controls the process of rendering text by retrieving data
from a source and firing events the developer uses to customize the dis-
play process. We’ll create the class and then extend it to render HTML
Input Button and Text tags along with static HTML text. Our framework
users will see the extensions to this object as components that are resid-
ing on the palette as JavaBeans.

Our base bean tag has two primary methods and several important
properties: (1) display(int index) drives the tag-rendering process, firing
events as needed – we implement this in the DataTag; (2) render(int index)

Java COM

22 FEBRUARY 2000

is an abstract polymorphic method implemented in our subclasses – this
method is called during the display process and creates and returns the
HTML. Our class also contains several instance variables (see Figure 1):
• String jspName: Name applied to a form tag for “name” and servlet

request parameter purposes
• DataAdapter valueSource: Source object from which the tag’s data

value will be retrieved
• String defaultStringValue: Value used when a tag isn’t bound to a source
• String stringValue: Temporary value changed on each rendering by

retrieving either a data value from the source or a copy of the default
value; developer formats this value in the formatOutputProperties event

• String extraAttr: Free-form field used by the developer to add
JavaScript or other scripting information – appended as last property

• Vector displayListeners: Event source support

Other properties work as well. For example, an extraAttributes tag, extra-
Attr, is included for adding JavaScript to our tags. All of our variables that have
accessor methods conforming to the JavaBean specification (or defined in
BeanInfo) can be set in the bean’s property sheet. However, the stringValue
property is meant solely for use via the API. No problem. We can choose to
hide it from the property sheet by creating a BeanInfo class. The source code
for the key instance variables and methods in DataTag is located in Listing 3.

Now let’s examine the display method in closer detail. This is where the
real action takes place. It executes property get and set statements and fires
DataTag defined events. As mentioned earlier, it makes sense to define
events that fire at different points in the display process to allow runtime
customization. For example, the snippet of the display logic below checks
for the existence of a DataAdapter as a source of our value. If none is found,
it uses a default string value provided via a property sheet. This is another
example where we could consider defining an event prior to executing this

logic. Why? On a tag-by-tag basis, we could then listen for the event and
execute logic to change the default value or change the source DataAdapter
based on user-specific information. Let’s say we’re including news head-
lines on our JSP page. One user may prefer Wall Street Journal headlines
while another prefers Newsweek. We could swap the source at runtime
before the value is retrieved without changing the core display process.

if(getValueSource() == null) {

setStringValue(

getDefaultStringValue());

} else {

setStringValue(

getValueSource().

getValue(index).toString());

}

Once we set our string value for display, we execute our own event, for-
matOutputProperties. To utilize the event, all our framework users need to
do is set up a listener and add the business logic. Since most IDEs provide
event and listener code-generation support, it’s a snap to implement.

With our DataTag base class coded, we can now extend the class to cre-
ate other tags. Only a single method, render(int index), must be imple-
mented, though many tags will add additional properties. For example, an
HTML text tag requires size and maxlength properties. The HtmlTextTag
demonstrates this in Listing 4 (property getters and setters have been elim-
inated to save space). The complete source and the source for other tags
used in the application can be found at www.JavaDevelopersJournal.com.

Finishing Our Framework
The last class to create in our framework is the container class for the

DataTags. We’ll call this class PageBean because it’ll be created based on
a reference in a JSP page (see Listing 5 for the complete source). The bean
will be the connector between the JSP page and our DataTags. We could
also use it to pass JSP variables, such as the pageContext, to our DataTags.
The PageBean maintains a hashtable of DataTags to the JSP page. When a
developer codes one of the following tags in the JSP template,

<%=pageBean.display(

"costCenter")%>

<%=pageBean.display(i,

"costCenter")%>

the method on our PageBean directs the call to the correct DataTag using
the following code:

return ((DataTag) tagTable

.get(name)).display(index);

With our lightweight framework complete, we can deploy it and build
the JSP application. After we JAR the classes and install them as compo-
nents in our JavaBean palette, the role of the framework developer is
complete. We can now leverage our IDE’s capabilities to utilize our
framework to speed development of the JSP.

Creating the JSP Application
For this example we’ll create a budget maintenance page to list departments

and their annual budgets (see Figure 2). First we create the BudgetPageBean
class to extend the PageBean class (see Listing 6). Next, we use our IDE (I’m
using VisualCafé) to drag and drop DataTags representing HTML tags onto the
BudgetPageBean. I did this for each HTML tag on the page and then renamed
the tags and set the properties. For example, two of our tags are a cost center
text field and an OK button (see Figure 3). We may be able to drag and drop the
objects to our bean using our editor. If not, we can do it by adding them to the
source as instance variables. We’ll also code several set methods to initialize
properties. Again, an IDE may create this code for us via property sheet
changes or we’ll code the changes ourselves in a constructor or init event.

FIGURE 1 JSP page in browser with JavaScript message displaying

FIGURE 2 CostCenterTag’s HtmlTextTag properties as displayed in VisualCafé

23FEBRUARY 2000

Java COM

Modis
www.modis.com

Java COM

24 FEBRUARY 2000

costCenterTag.setJSPName(

"costCenter");

costCenterTag.setMaxLength(8);

costCenterTag.setSize(8);

okTag.setJSPName("okButton");

okTag.setDefaultStringValue(

"OK");

okTag.setExtraAttr(

"onClick=\"return

buttonEvent(\'Ok\')\"");

Next, we’ll add our instance variables that are our source data items.
These values will be set by our business logic prior to displaying the
page. Note: We include support for both single-value items and array
items. This structure corresponds to the servlet API’s support for both
types via getParameter() and getParameterValues().

With all our variables defined, we’ll complete the initial setup by link-
ing the tag to its container and data source. enableTag() adds the tag to
the pageBean’s hashtable and setValueSource() sets the object from
which we’ll retrieve data values.

enableTag(costCenterTag);

costCenterTag.setValueSource(

costCenter);

Let’s make this more interesting by adding currency formatting to the
budget text field for display purposes. We’ll just register an event listener
with the budgetTag so we can respond to the formatOutputProperties
event (see Figure 4). Your IDE may even add all the plumbing for the lis-
tener. In your listener, add the business logic to make the change. The
code that changes the formatting is shown below.

DataTag tag = (DataTag)

event.getSource();

tag.setStringValue("$" +

tag.getStringValue() + ".00");

Creating the JSP Page
The last step in our process is to create the JSP page. Actually, this can

be your first step, depending on your preferred approach. We’ll create a
basic JSP page with some single-value tags along with an HTML table.
Note that very little business logic or display code is needed in the JSP
page. This keeps our HTML clean and provides for easier graphical HTML
editing via DreamWeaver or FrontPage. The controlling display logic is
maintained in our PageBean-derived class instead of being interspersed
with HTML in the JSP template. The JSP source is in Listing 7. Take note
that we have easily incorporated an HTML table into our source. Since
our framework supports arrays, we just pass a row number to our source.

<%for(int i=0; i<3; i++) {%>

<tr><td><%=pageBean.display(

i,"dept")%></td>

<td><%=pageBean.display(

i,"budget")%></td></tr>

<%}%>

There you have it! We’ve implemented a JSP component-based frame-
work and built our first Web page by applying it. Using this approach iso-
lates the HTML template from the dynamic display control logic, allows
us to use a component-based approach and leverages the rapid applica-
tion capabilities of today’s IDEs.

AUTHOR BIO
David Lyons is a technology director with Virtualogic in Bethesda, Maryland. A Sun NetDynamics certified
instructor, David has developed Web applications using several Java application servers.

dlyons@virtualogic.com

FIGURE 3 okTag’s HtmlButtonTag properties as displayed in VisualCafé

FIGURE 4 VisualCafé’s graphical way of binding events to listeners

package jspf;
public class DisplayEvent extends

java.util.EventObject {
private int rowIndex;

// pass rowIndex so tag can retrive
// multivalued items
public DisplayEvent(Object source,

int rowIndex) {
super(source);
this.rowIndex = rowIndex;

}
public int getRowIndex() {

return rowIndex;
}

}

package jspf;
public interface DisplayListener

extends java.util.EventListener {
public void formatOutputProperties(

DisplayEvent e);
}

package jspf;
public class DataAdapter extends Object

implements java.io.Serializable {
private Object value;
private Object[] arrayValue;
private boolean multivalued = false;

// wrap a single-value item
public DataAdapter(Object value) {

this.value = value;
multivalued = false;

}
// wrap an array item
public DataAdapter(Object[] value) {

this.arrayValue = value;
multivalued = true;

}
public Object getValue() {

if(multivalued) {
return arrayValue[0];

} else {
return value;

}
}

Listing 2: Data Adapter source

Listing 1: Event and Listener source

25FEBRUARY 2000

Java COM

YouCentric
www.youcentric.com

Java COM

26 FEBRUARY 2000

// return the requested value. Note:
// works with both single- and multi-
// value items
public Object getValue(int index) {
if(multivalued) {

return arrayValue[index];
} else {

return value;
}

}
}

private String jspName = "";
private DataAdapter valueSource;
private String defaultStringValue = "";
private String stringValue = "";
private String extraAttr = "";
private Vector displayListeners = new
Vector();

abstract public String render(int index);

protected String display(int index) {
// reset our temp value before display
setStringValue("");
// get default value or get dynamic value
// from our data source
if(getValueSource() == null) {

setStringValue(getDefaultString-
Value());

} else {
setStringValue(getValueSource().

getValue(index).toString());
}
// fire format event so developers can
// customize stringValue to display
Vector v1 = (Vector)displayListen-
ers.clone();
for(int i=0; i < v1.size(); i++)

((DisplayListener)
v1.elementAt(i)).

formatOutputProperties(
new DisplayEvent(this, index));

// create html by calling tag's
// render process
return render(index);

}

package jspf;
public class HtmlTextTag extends DataTag {

private int maxLength = 10;
private int size = 10;
private boolean password = false;

public String render(int index) {
StringBuffer html = new String-
Buffer();

html.append("<INPUT TYPE=");
// check for password type
if(isPassword())

html.append("PASSWORD ");
else

html.append("TEXT ");
html.append("NAME=").append("\"").

append(getJSPName()).append("\" ");
html.append("VALUE=").append("\"").

append(getStringValue()).append("\" ");
html.append("MAXLENGTH=\"").

append(getMaxLength()).append("\" ");
html.append("SIZE=\"").append(get-

Size()).
append("\"");

// if extra attributes included,
// append them.
if(! getExtraAttr().equals(""))
html.append(" ").append(getExtraAttr());

html.append(">");
return html.toString();

}
// property get / set methods excluded
// from listing – see complete source

package jspf;
import java.util.Hashtable;

public abstract class PageBean
implements java.io.Serializable {

private Hashtable tagTable = new
Hashtable();

// single value display process
public String display(String name) {

return processDisplay(-1, name);
}
// overloaded display process multi-
// value items
public String display(int index,
String name) {

return processDisplay(index, name);
}
// forward display request to named tag
protected String processDisplay(int index,

String name) {
return ((DataTag)

tagTable.get(name)).
display(index);

}
// add tag to hashtable of tags we
// can display
protected synchronized void enableTag(

DataTag tag) {
tagTable.put(tag.getJSPName(), tag);

}
}

package jspf;

public class BudgetPageBean extends
jspf.PageBean{

String costCenter = "Value to replace";
String[] dept = {"Acct", "Mgmt", "Mkt"};
Integer[] budget = new Integer[3];

public BudgetPageBean() {
// visual cafe init - varies per IDE
vcInit();
// load budget array
budget[0] = new Integer(100);
budget[1] = new Integer(120);
budget[2] = new Integer(130);
// load tags we'll display from JSP
enableTag(costCenterTag);
enableTag(deptTag);
enableTag(budgetTag);
enableTag(okTag);
enableTag(cancelTag);
// set sourceValues
costCenterTag.setValueSource(cost-
Center);
deptTag.setValueSource(dept);
budgetTag.setValueSource(budget);

SymDisplay lSymDisplay = new
SymDisplay();
budgetTag.addDisplayListen-
er(lSymDisplay);

costCenterTag.addDisplayListener(lSymDis play);
}

public void vcInit() {
costCenterTag.setJSPName("costCenter");
costCenterTag.setMaxLength(8);
costCenterTag.setSize(8);
deptTag.setJSPName("dept");
budgetTag.setJSPName("budget");
okTag.setExtraAttr(

"onClick=\"return
buttonEvent(\'Ok\')\"");

okTag.setDefaultStringValue("OK");
okTag.setJSPName("okButton");
cancelTag.setExtraAttr(
"onClick=\"return buttonEvent(\'Can-
cel\')\"");

cancelTag.setDefaultStringValue("Cancel");
cancelTag.setJSPName("cancelButton");

}

HtmlTextTag costCenterTag = new Html-
TextTag();
HtmlStaticTextTag deptTag = new

HtmlStaticTextTag();
HtmlTextTag budgetTag = new HtmlText Tag();
HtmlButtonTag okTag = new HtmlButtonTag();
HtmlButtonTag cancelTag = new Html-
ButtonTag();

// diplaylistener class added by IDE
class SymDisplay implements Dis-
playListener {

public void formatOutputProperties(
DisplayEvent event) {

Object object = event.get-
Source();
if (object == budgetTag)

budgetTag_formatOutputProper-
ties(event);

else if (object == costCenterTag)
costCenterTag_formatOutputProperties(event);

}
}
// add budget currency formatting
void budgetTag_formatOutputProperties(

DisplayEvent event) {
DataTag tag = (DataTag) event.get-
Source();
tag.setStringValue("$" + tag.get-

StringValue()
+ ".00");

}
// set cost center value on the fly
// via code
void costCenterTag_formatOutputProperties(

jspf.DisplayEvent event) {
DataTag tag = (DataTag) event.get-
Source();
tag.setStringValue("A12345");

}
}

<%@page language="java" session="true"%>
<jsp:useBean id="pageBean" scope="page"
class="jspf.BudgetPageBean"/>
<html><head><title>JSP Budget Mainte-
nance</title>
<SCRIPT LANGUAGE="JavaScript">

// sample Javascript function we call
// via setting extraAttr property
function buttonEvent(button) {

alert("I clicked the " + button + "
button!");
return false;

}
</SCRIPT>
</head><body bgcolor="#FFFFFF">
<h2>JSP Budget Maintenance</h2>
<form method="post" action="tp.jsp"
name="frm1">
<p>Cost Center:

<%=pageBean.display("costCenter")%></p>
<table border="1">

<tr><td>Department</td><td>Budget</td></tr>
<%for(int i = 0; i < 3; i++) {%>
<tr>

<td><%=pageBean.display(i,"dept")%></td>
<td><%=pageBean.display(i,"bud-

get")%></td>
</tr>
<%}%>

</table>
<p><%=pageBean.display("okButton")%>
<%=pageBean.display("cancelButton")%></p
>
</form></body></html>

Listing 7: Budget.jsp source

Listing 6: BudgetPageBean source

Listing 5: PageBean source

Listing 4: HtmlTextTag

Listing 3: DataTag key instance variables and methods

27FEBRUARY 2000

Java COM

Flashline
www.flashline.com

Java COM

28 FEBRUARY 2000

WRITTEN BY
ALEXANDRE LEMIEUX

What's Going On with Your Downloads?
How to provide the details your clients are asking for

W
ith the Internet widely available, many software clients are
asking for built-in networking capabilities. Data exchange
is an advantage in any software product, and software that
offers networking functions has a better chance of being
selected.

P R O G R A M M I N G T E C H N I Q U E S

Although the Internet has spread
throughout the world, the rate of data
transmission is still a problem, even on
your business’s local area network. Get-
ting files from the Internet easily takes a
few minutes even with a high-speed
connection. Users want to see what’s
going on with their software when it’s
looking for data on the Internet. Telling
them when it’s over isn’t sufficient. Pro-
grammers need to show them, by any
means possible, that data is flowing
between the server and their software.
Elements such as the completion per-
centage, transfer rate, progress bar, esti-
mated remaining download time and
animation will make users wait more
patiently in front of their screen. No
more “Please wait...” messages.

I’ll propose two classes that’ll enable
you to provide the details your clients
are asking for. Your data transfer won’t
be faster, but users will be more likely to
wait until the end rather than click the
“Cancel” button in desperation.

I/O Handling
Before going into implementation

details, I’ll do a brief overview of I/O
handling in Java. As you probably know,
there are two I/O families: the input and
output streams and the reader/writers.

Streams are low-level classes that
allow you to directly use the disk, net-
working and peripherals to read and
write raw bytes. Readers and writers are
wrapper classes that translate unfor-
matted data provided by the streams in
data types, thus allowing them to be
handled by programmers (boolean, int,
float, string, even serialized objects).
Since I’m willing to provide a source-
dependent solution, I’d implement
streams as base classes rather than read-
ers and writers because they’re too spe-
cific to be used in this situation.

There are more than 20 classes for
handling data I/O in the stream mode,
but they all have something in common:
they inherit from the java.io.Input-
Stream or java.io.OutputStream classes.
Studying these classes, I’ve found that
only two of their methods are abstract:
the read() method (from the Input-
Stream) and the write() method (from
the OutputStream). All I had to do was
implement these methods and add new
ones.

The Architecture Used
I’ll create wrapper classes that will

plug into other classes to add functions
to the old ones, the same way reader and
writer classes do. See Figure 1 for the
class hierarchy diagram.

The inheritance technique isn’t
usable because in order to be source-
dependent, the solution can’t be as spe-
cific as FileInputStream, SocketInput-
Stream and all the other classes. It’s sim-
ply impossible to extend all these class-
es. Rather, I’d extend the abstract Input-
Stream (and OutputStream) to create
wrapper classes.

Data
Source

Internal
I/O Stream

Wrapper
I/O Class

Java
standard

I/O methods

Wrapper
I/O Class

new methods

FIGURE 1 Class hierarchy diagram

Internet

Socket
Input

Stream

Buffered
Reader

Input Stream
Reader

Download
 Input Stream

readLine()
method calls

FIGURE 2B Possible uses of classes

Internet

URL
Input

Stream

Download
Input

Stream

Binary reading
using the

read() method

FIGURE 2A

29FEBRUARY 2000

Java COM

Persistence
www.persistence.com

Java COM

30 FEBRUARY 2000

Since my classes will extend Input-
Stream (or OutputStream), they can be
used in the same way as any base class,
even in conjunction with reader/writer
classes. The main goal is to provide pro-
grammers with a class that acts the same
way as the InputStream and Output-
Stream classes.

Figures 2A and B give examples of
possible uses of my classes: binary read-
ing from a URL and formatted reading
from a socket connection.

Defining the Problem
Which variables should you show to

your users to make their wait a little eas-
ier? Here’s a short list of data users want
to see:
• Number of bytes read
• Total size
• Elapsed downloading or uploading time
• Mean transfer rate
• Estimated remaining download or

upload time

To provide your users with this data,
you need only a few variables – start
time, number of bytes read and total
size. With these variables you’ll be able
to compute any of the values listed
above. It must be said, however, that
some of these variables aren’t always
available. While downloading data from
a servlet, for example, you won’t know
the full length of what you’re download-
ing until it’s over (and that’s too late).
This is also the case for most custom
protocols over a socket connection.

Implementing the Classes
Since these classes must be able to be

used from any source, they must inherit
from java.io.InputStream and java.io.Out-
putStream. As I’ve said before, it’s impos-
sible to know the exact length of an Input-
Stream or an OutputStream. This leaves
us with two possibilities: force the devel-
oper to give it through a constructor,
which allows us to provide needed values,
or simply ignore it, in which case some
values won’t be available. The only excep-
tion to this problem is the java.net.URL
object. With the java.net.URLConnection
class, the developer will usually know the
size of a download before reading it. To
simplify the process, a special constructor
has been made to handle URLs.

Here are the constructors for both
wrapper classes:
• DownloadInputStream(InputStream

is, int size)
• DownloadInputStream(InputStream

is)
• DownloadInputStream(URL url)
• UploadOutputStream(OutputStream

os, int size)
• UploadOutputStream(OutputStream

os)

Almost every method call is simply a
call to its equivalent on the private inter-
nal instance. The available() method of
DownloadInputStream calls the avail-
able() method on the private instance of
the InputStream given through the con-
structor.

public int available() throws IOEx-

ception {

return internalInputStream.avail-

able();

}

You need to know the starting time
and the number of bytes being read up
to now. To provide the user with this
data, you need to reimplement the
read(...) and write(...) methods so that
the information is computed as the
stream is being used. The following code
shows the reimplementation of the
read(...) method of the DownloadInput-
Stream.

public int read(byte[] b, int off,

int len)

throws IOException {

if (startTime == -1)

startTime = System.current-

TimeMillis();

int read =

internalInputStream.read(b,off,len);

bytesRead += read;

return read;

}

All you have to do is implement new
methods that’ll compute all the infor-
mation you need to know about these
streams with the new variables.

The transfer rate is quite simple –
divide the number of bytes being read
by the elapsed download time. The
result is in bytes per millisecond. See
Listing 1 for the exact implementation of
this method.

The estimated remaining download
or upload time is computed with an
interpolation that relies on the transfer
rate you’ve just computed. The hypoth-
esis is that the rest of the data to be
transferred will be downloaded/up-
loaded at approximately the same rate
as the first part. The -1 value is returned
if the full length of the input or output
stream is unknown. The exact imple-
mentation of this method is shown in
Listing 2.

EXAMPLE
Finally, since a bit of code is worth a

thousand words, I’ve provided an exam-
ple to prove how simple it can be to use
these classes. It’s a short program that
downloads a given file from a URL on
the local disk. While the file is being
downloaded, data such as transfer rate,
estimated remaining download time
and a progress bar will show the user the
state of his or her download (see Figure
3). See Listing 3 for the full example
code.

Limitations
Keep in mind that the data provided

by these classes must be carefully inter-
preted. If you build a program that calls
the read(...) method every five minutes,
you won’t get the exact transfer rate and
estimated download time whether
you’re using a 100Mb LAN or a dial-up
modem. Since the interpolation is really
simple, it can’t handle extreme cases
such as this.

With this in mind, you’ll now be able
to use these classes to provide your
users with all the data they want to
know. Since these classes can be used
with the same methods as the common
Java Input and Output Streams, you
won’t have to go through a learning
curve.

AUTHOR BIO
Alexandre Lemieux is

studying computer
engineering at the

Université du Québec à
Chicoutimi in Canada. He
also teaches UNIX, PERL
and Java at the Humanis,

Centre de Formation
Continue, and manages a

software development
project for Humanis using

Java servlets and
distributed objects

with RMI.

P R O G R A M M I N G T E C H N I Q U E S

FIGURE 3 A running example of the
download example

package net.fortrel.io;

import java.io.*;
import java.net.*;

/**

* This is the Wrapper class for the Input
* Stream.
*/

public class DownloadInputStream
extends InputStream {

// The Input Stream from which to read.

private InputStream internalInputStream;

// The length of the input stream, the
// starting time of download and the number
// of bytes being read.
private int length = -1;
private long startTime = -1;

Listing 1: DownloadInputStream.java

fortrel@fortrel.net

31FEBRUARY 2000

Java COM

Tidestone
www.tidestone.com

Java COM

32 FEBRUARY 2000

private long bytesRead = 0;

/**
* Constructor if we know the length of the
* input stream.
*/

public DownloadInputStream(Input
Stream is,

int length) {
internalInputStream = is;
this.length = length;

}

/**
* Constructor if the length is unknown.
*/

public DownloadInputStream(Input
Stream is) {

internalInputStream = is;
}

/**
* Special constructor for a URL.
*/

public DownloadInputStream(URL url)
throws IOException {

URLConnection connection =
url.openConnection();

this.length = connection.getContentLength();

internalInputStream =
connection.getInputStream();

}

/**
* Get the current download rate in bytes
* per millisecond.
*/

public float getDownloadRate() {
if (startTime != -1) {

long currentTime =
System.currentTimeMillis();

return bytesRead / (float)(currentTime -
startTime);

}
else

return -1.0f;
}

/**
* Get the time since the beginning of the
* download in milliseconds.
*/

public long getDownloadTime() {
if (startTime != -1)

return System.currentTimeMillis() -
startTime;

else
return 0;

}

/**
* Get the completion percent.
*/

public float getDownloadedPercent()
{

if (startTime == -1 || length == -1)
return -1.0f;

else {
return (float)bytesRead /

(float)length;
}

}

/**
* Get the number of bytes read until now.
*/

public long getBytesRead() {
return bytesRead;

}

/**
* Get the length of the input stream.
* Returns -1 if the length is unknown.
*/

public long getBytesTotal() {
return length;

}

/**
* Get the estimated remaining download
* time in milliseconds.
*/

public long getEstimatedDownloadTime() {
if (startTime == -1 || length == -1)

return -1;

long currentTime =
System.currentTimeMillis();

return (long)((length - bytesRead) /
getDownloadRate());

}

/***************************************
* All other methods are the implemen-
* tation of the InputStream methods.

***************************************/

public int available() throws IOException {
return internalInputStream.available();

}

public void close() throws IOException {
internalInputStream.close();

}

public void mark(int readlimit) {
internalInputStream.mark(readlimit);

}

public boolean markSupported() {
return internalInputStream.markSupported();

}

public int read() throws IOException
{

if (startTime == -1)
startTime = System.currentTimeMillis();

int b = internalInputStream.read();

if (b != -1)
bytesRead++;

return b;
}

public int read(byte[] b, int off, int len)
throws IOException {

if (startTime == -1)
startTime = System.current-
TimeMillis();

int read = internalInput-
Stream.read(b,off,

len);

bytesRead += read;

return read;
}

public void reset() throws IOException {
startTime = -1;
bytesRead = 0;

internalInputStream.reset();
}

public long skip(long n) throws
IOException {

long skipped = internalInput-

Stream.skip(n);
bytesRead += skipped;

return skipped;
}

}

package net.fortrel.io;

import java.io.*;

/**
* This is the Wrapper class for the
* Output Stream.
*/

public class UploadOutputStream
extends OutputStream {

// Private internal stream.
private OutputStream internalOutputStream;

// The length of the output stream, the
// upload start time and the number of
// bytes being writen.
private int length=-1;
private long startTime=-1;
private int bytesWriten=0;

/**
* Constructor to use if the length is
* unknown.
*/

public UploadOutputStream(Output-
Stream os) {

internalOutputStream = os;
}

/**
* Constructor to use when the
* length is known.
*/

public UploadOutputStream(Output-
Stream os,

int length) {
internalOutputStream = os;
this.length = length;

}

/**
* Get the upload transfer rate in
* bytes per millisecond.
*/

public float getUploadRate() {
if (startTime != -1) {

long currentTime =
System.currentTimeMillis();

return bytesWriten /
(float)(currentTime-startTime);

}
else

return -1.0f;
}

/**
* Get the time since the beginning
* of the upload in milliseconds.
*/

public long getUploadTime() {
if (startTime != -1)

return System.currentTimeMillis() -
startTime;

else
return -0;

}

/**
* Get the completion percent.
*/

public float getUploadPercent() {
if (startTime == -1 || length == -1)

Listing 2: UploadOutputStream.java

33FEBRUARY 2000

Java COM

Object Switch
www.objectswitch.com

Java COM

34 FEBRUARY 2000

return -1.0f;
else {

return (float)bytesWriten /
(float)length;

}
}

/**
* Get the number of bytes being
* writen by now.
*/

public long getBytesWriten() {
return bytesWriten;

}

/**
* Get the length of the output
* stream content to be writen.
*/

public long getBytesTotal() {
return length;

}

/**
* Get the estimated uploading time
* in milliseconds.
*/

public long getEstimatedUploadTime()
{

if (startTime == -1 || length == -1)
return -1;

long currentTime =
System.currentTimeMillis();

return (long)((length -
bytesWriten) /

getUploadRate());
}

/***************************************
* All other methods are the imple-
* mentation of the OuputStream methods.

***************************************/
public void close() throws IOException {

internalOutputStream.close();
}

public void flush() throws IOException {
internalOutputStream.flush();

}

public void write(byte[] b, int off, int len)
throws IOException {

if (startTime == -1)
startTime = System.current-
TimeMillis();

bytesWriten += len;

internalOutputStream.write(b,off,len);
}

public void write(int b) throws
IOException {

if (startTime == -1)
startTime = System.current-
TimeMillis();

bytesWriten++;

internalOutputStream.write(b);
}

}

package net.fortrel.io;

import java.io.*;
import java.net.*;
import java.awt.*;
import javax.swing.*;

/**
* An example on using the DownloadIn-
* putStream.
*/

public class DownloadDialog extends JDialog
implements Runnable {

private JProgressBar bar;
private JLabel lTransfertRate,

lEstimatedDownloadTime,
lBytesRead,
lBytesTotal;

private DownloadInputStream dis;
private OutputStream os;

private Thread myThread;

public DownloadDialog(Frame owner,
URL url,
String outputFile)

throws IOException {
super(owner, "Download", false);

// Build the User Interface.
buildUI(url.toString());
pack();

// Open every streams.
dis = new DownloadInputStream(url);
os = new FileOutputStream(outputFile);

// Start the downloading thread.
myThread = new Thread(this);
myThread.start();

}

/**
* A private method to build the
* User Interface.
*/

private void buildUI(String url) {
JLabel lFile = new
JLabel("File: " + url);
lBytesRead = new JLabel("Bytes
read:");
lBytesTotal = new
JLabel("Size:");
lTransfertRate = new

JLabel("Transfer rate:");
lEstimatedDownloadTime = new

JLabel("Estimated downloading
time:");

bar = new JProgressBar(
JProgressBar.HORIZON
TAL, 0, 100);

// Do the layout.
getContentPane().setLayout(new
GridLayout(0,1));

getContentPane().add(lFile);
getContentPane().add(lBytesRead);
getContentPane().add(lBytesTotal);
getContentPane().add(lTransfertRate);
getContentPane().add(lEstimated-
DownloadTime);
getContentPane().add(bar);

}

/**
* The downloading thread method.
*/

public void run() {
byte buffer[] = new byte[1024];

while(true) {
try {

int b = dis.read(buffer);

if (b <= 0) {
// The end of the down-
// load is reached.

os.close();

System.exit(0);
}
else {

// Save the data
os.write(buffer, 0, b);

// Update the on-screen
// fields.

lBytesRead.setText("Bytes read:" +
dis.getBytesRead());

lBytesTotal.setText("Size:" +
dis.getBytesTotal());

lTransfertRate.setText(
"Transfer rate:" +
dis.getDownloadRate() *
(1000f/1024f) +
" kb/s");

lEstimatedDownloadTime.setText(
"Estimated downlaod-
ing time:" +

(int)(dis.getEsti-
matedDownloadTime()
/ 1000) + " sec.");

bar.setValue(
(int)(dis.getDown-
loadedPercent() *
100));

}
}
catch(IOException e) {

System.err.println("Error:
" + e);

break;
}

}
}

/**
* The main method.
* Use two parameters: the URL and
* the filename to create.
*/

public static void main(String args[]) {
if (args.length != 2) {

System.err.println("Please
give the URL"+

" to connect to and the
file store"+

" the downloaded data.");
System.exit(-1);

}

try {
URL url = new URL(args[0]);
String filename = args[1];

DownloadDialog dd =
new DownloadDialog(new
JFrame(),

url,
filename);

dd.show();
}
catch(Exception e) {

System.err.println("Error:" + e);

e.printStackTrace();
}

}
}

Listing 3: DownloadDialog.java

35FEBRUARY 2000

Java COM

Compuware
NuMega

www.compuware.com

S Y S - C O N R A D I O

Q:
A:
Q:
A:

Q:
A:

Q:
A:

Q: Q:
A:A:

Q:
A:

Q:
A:

JDJ: Tell us about your Jasmine product.
Lipton: Most people are familiar with the
current release of Jasmine, 1.21 – it’s a
powerful object database with some char-
acteristics that people tend to associate
with application servers. The typical object
database is a passive repository for the
state of an object, but in the case of Jas-
mine objects have both state and behav-
ior. In a Jasmine 1.21 environment objects
aren’t just sitting there being persisted but
are actually doing all kinds of work. That’s
how the current technology works, but of
course what we’re most excited about is
what we’re working on now.

JDJ: How about the new product?
Lipton: The new product is called Jas-
mine ii – Jasmine Intelligence for the
Internet. It’s a complete environment for
rapid development of highly manageable,
intelligent e-business solutions. We enable
e-business applications to be intelligent
using our patented Neugent technology as
a Jasmine ii option. As you know, Neu-
gents are the advanced neural network
technology that we’ve developed, and I’ll
speak more about them in a minute. But
Jasmine ii is also an open infrastructure
for distributing, deploying and integrating
all data providers and applications
throughout the enterprise to the Internet
and beyond. It’s a synthesis of intelligence,
middleware, development tools, persistent
storage, integration capabilities and mod-
eling. Also, Jasmine ii is an object-model
neutral platform. We work with CORBA,
COM and EJB in terms of object models
and integrate with a vast array of databas-
es and other unique data providers –
everything from CICS to LDAP.

JDJ: Is Jasmine ii still a database?
Lipton: Jasmine ii is more than just a
database. However, there will be an object
database option called Jasmine ii ODB for
those interested in using the object data-
base subset to do the kinds of things that
the object database does well, like opti-

mized object persistence without the over-
head of mapping, object caching and
managing complex content. But what Jas-
mine ii is really about is building robust e-
business applications and transforming
existing systems into Web assets. To do
this we had to go way beyond databases
and what they can do. We had to add
messaging, ORBs, global resource pooling
and optimization, EJB support, Neugents,
and so much more. We added modeling
capabilities. And to make all this easy for
developers to use, we created integration
for the popular Java IDEs like VisualCafé,
JBuilder and VisualAge. We don’t force
developers to use a particular IDE. In fact,
we offer the same freedom to non-Java
developers using Visual Basic or C++. The
need for this kind of infrastructure hits
developers all the time and in many dif-
ferent ways when they try to live up to
object-oriented principles like code reuse.

There are many reasons why program-
mers don’t reuse code that much. Let’s
face it, most of the data in the enterprise
isn’t even an object. About 80% of the
data isn’t even in relational databases. It’s
in prerelational databases, VSAM files on
mainframes, e-mails, on green-screen ter-
minals or whatever. In a world where e-
business is demanding applications that
are integrated into an extremely wide
range of applications and data providers,
as well as with partners and customers,
that’s one important issue. The other issue
is that we do have these conflicting com-
ponent models like EJB, COM and
CORBA. To a varying extent they’re not
really that interoperable. How do you
keep track of all their objects and organize
them? The lack of a central catalog that
understands all object models is also a
problem. That’s something that an object
database can do really well. Does that
mean that Jasmine ii is just an object data-
base? Or that it only talks to object data-
bases? Absolutely not. Jasmine ii talks to
relational databases, too – such as Oracle,
DB2, Sybase and Ingres, all the relational
data providers but also nonrelational data
providers.

In the real world there are real systems
running on things like IMS, VSAM, IDMS
and Datacom, and these systems are quite
important. I know we’d like to erase it all
and just start with this Java purity, but the
reality of the matter is that these systems
are running the bulk of today’s business-

es. If we doubt that, just look at the tril-
lions of dollars that were spent on Y2K. So
there’s a real need not to be religious
about this and integrate at multiple levels.

JDJ: So, is Jasmine ii all about
integrating in a really big way?
Lipton: Integration is just one way that
we think it will be uniquely positioned in
the marketplace, because Jasmine ii is an
infrastructure for building intelligent appli-
cations using the Neugent technology I
mentioned earlier. Neugents work very
differently from the conventional rule-
based expert systems of the ’80s and ’90s.
Rather than have a developer program in
the business rules or do some kind of sta-
tistical analysis – which may be expensive
and difficult to adapt to rapidly changing
business conditions – Neugents are self-
adapting and learn the way people do,
from their own experience. We’ve been
using them successfully in our Unicenter
TNG product for quite a while now. Since
Unicenter is an enterprise management
product, it uses them to make predictions
about events that will happen in the
future. You know, instead of waiting for
your e-commerce server to crash so you
can panic, it posts a warning that says
something like “there is a 90% probability
of the e-commerce server crashing in 45
minutes.” This is a lifesaver for serious
business on the Internet. It happens
because Neugents recognize complex pat-
terns and learn from experience, just as
humans do. In the case of Jasmine ii
we’ve integrated the Neugent technology
as an option allowing developers to create
applications that can adapt to changing
business environments.

JDJ: What would be the correct term for
Jasmine ii? Is it an application server?
Lipton: The new term is infrastructure.
Jasmine ii is an end-to-end infrastructure
for creating e-business applications, partic-
ularly intelligent applications. The reason
Jasmine ii isn’t an application server is that
the vision of it is so much greater. We’ve
taken Java and added to it all our tech-
nologies in the areas of networks, enter-
prise management, security, databases,
and much more that have taken us over
two decades to develop. And no matter
how talented you are, and how many
clever people in your garage or office are
working on the newest and greatest Java

app server, you can’t leverage decades of
experience and technology if you don’t
have them to use.

JDJ: Are you going to be running
sessions, etc., to train the new breed
of Jasmine developers?
Lipton: Well, of course, we’ll be offering
extensive training, but any Java developer
can be a Jasmine developer quite easily.
Jasmine also has interfaces for C++ and
COM for Visual Basic programmers
because, again, we have to face the reality
that these systems aren’t going to disap-
pear overnight. While we support Java, we
have to be responsive to the genuine
needs of all our clients.

Jasmine’s architecture is quite extensi-
ble in terms of the kinds of services we
can add to it. For example, it was easy to
add XML support to Jasmine ii. But e-busi-
ness today is putting tremendous competi-
tive pressure on companies to differentiate
their Web sites and their business systems.
That’s where the intelligence of Neugents
comes in. It directly translates to an “above
the line” competitive advantage.

JDJ: Basically, just as Java brought
the threads and multiprocessing to
the user very easily, you’re bringing
the world the neural nets and all the
knock-on effects that it has to the
end user.
Lipton: Personally, I see it continuing to
evolve into an ever-more-useful, intelli-
gent, and self-adaptive infrastructure. For
example, at the core of Jasmine ii there’s
a lot of attention given to visualization
technologies, particularly in the area of
3D. The object database is multimedia
aware, so we’re leveraging that to the next
generation and applying Neugent intelli-
gence and visualization technology in a
sort of synergy. In the next few years
what’s going to really distinguish one e-
business site from another is exactly the
kind of application that Jasmine ii makes
possible: an intelligent, self-learning, multi-
media-aware application.

JDJ: When is it available?
Lipton: Well, it’s in open beta, with some
clients already using the new functionality for
developing production systems. We’re very
enthusiastic about our delivery schedule, and
are looking at a time frame measured in
months to go to full general availability.

Interview... with PAUL LIPTON DIRECTOR OF OBJECT TECHNOLOGY, COMPUTER ASSOCIATES

Java COM

36 FEBRUARY 2000

37FEBRUARY 2000

Java COM

VisiComp
www.visicomp.com

WRITTEN BY
PAT PATERNOSTRO

An AWT Tip Window Control

A
tip window (also known as a tool tip window) is a small
popup window that displays a single line of descriptive text.
Tip windows are usually displayed over toolbar buttons to
provide textual help about a toolbar button’s functionality.
The tip window control is available for Swing components
via the JComponent class’s setToolTipText() method; unfor-
tunately, the AWT doesn’t have an equivalent control at its
disposal.This article details the classes that constitute my
implementation of an AWT tip window control.

J A V A H E L P

Java COM

38 FEBRUARY 2000

Implementation
The tip window control is made up of

two classes, TipWindow and TipWindow-
MouseAdapter, located in TipWindow.java.

The TipWindow class (see Listing 1),
which extends the java.awt.Window class,
contains a single constructor and over-
rides the java.awt.Container paint()
method. The constructor requires four
parameters: a java.awt.Frame reference, a
java.lang.String reference and two integer
values. The constructor first calls the
superclass’s constructor, passing it the
java.awt.Frame reference, which is re-
quired when constructing a Window
object. Next, the java.lang.String refer-
ence is saved to a string instance variable
that represents the tip window’s help text.
The tip window’s background color is set
to the ubiquitous yellow found on all tip
window controls. A font is chosen and set
for the tip window, and a java.awt.Font-
Metrics object is retrieved on the font cur-
rently set. The FontMetrics object is used
(1) to calculate a y coordinate for the tip
window’s help text via the FontMetrics
getAscent() method, and (2) to size the tip
window using the values returned from
the FontMetrics stringWidth() and get-

Height() methods. The constant integer
variable slack is added to the tip window’s
width and height to provide a buffer
between the help text and the edges of the
tip window. The tip window’s location is
set from the passed integer parameters,
which represent an x and y coordinate,
and the tip window is finally made visible
via the java.awt.Component setVisible()
method. Since the Window class doesn’t
contain any window decorations (e.g.,
border, title), the overridden paint()
method draws a black border around the
tip window via the java.awt.Graphics
drawRect() method and draws the help
text via the java.awt.Graphics draw-
String() method.

The TipWindowMouseAdapter class
(see Listing 2) extends the java.awt.-
event.MouseAdapter class and contains
a constructor and two overridden meth-
ods: mouseEntered() and mouseExit-
ed(). An adapter class is a convenience
class that implements a specific event
listener interface (e.g., MouseListener,
WindowListener). The adapter class
makes it easier to listen for specific
events without having to implement all
the event listener interface methods
since they’re already implemented in

the adapter class. The TipWindow-
MouseAdapter constructor requires two
parameters: a java.awt.Frame reference
and a java.lang.String reference. The
Frame reference is the same one that’s
passed to the TipWindow constructor
and represents the tip window’s con-
tainer. The string reference is the name
of a properties file (minus the .proper-
ties extension), which is a simple text file
that contains key-value pairs. The key
identifies the name of a GUI control and
the value consists of the control’s help
text that’s displayed in the tip window
(more on this later). The properties file is
opened and its contents placed in a
hashtable for later retrieval via the
java.util.ResourceBundle getBundle()
method. Resource bundles, backed by
properties files, are used primarily to
internationalize a Java program. To
learn more about resource bundles and
internationalizing your Java program,
look at the Internationalization section
of Sun’s Java Tutorial located at http://
java.sun.com/docs/books/tutorial/i18n
/index.html.

The mouseEntered() method first
retrieves the component on which the
mouse event occurred and the compo-

A simple help mechanism for your Java program’s GUI controls

FIGURE 1 The helptext.properties file
contents

TIP WINDOWS IN AN APPLET
You can also create tip windows for an applet’s GUI controls. Use the following code

to retrieve the applet’s java.awt.Frame reference:

public void init()

{

Object parent;

parent = getParent();

while (!(parent instanceof Frame))

parent = ((Component) parent).getParent();

}

You’ll need to cast the java.lang.Object reference variable, parent, to a java.awt.Frame ref-
erence when calling the TipWindowMouseAdapter constructor. Also be aware that a warn-
ing banner will display on the applet’s tip windows unless the applet is digitally signed.

I had mixed results creating tip windows for my applet’s GUI controls. I created a
JAR file containing all the necessary files (class and properties) since my ISP doesn’t
allow any files with a .properties extension. I launched the applet using Netscape Com-
municator 4.6 and kept receiving the following error: Applet exception: error:
java.lang.ClassFormatError: Bad magic number. This error normally signifies that a
class file is corrupt, most often because the file was incorrectly FTP’ed (i.e., binary
mode wasn’t specified on the transfer). Having checked that my FTP process was cor-
rect, I tried launching the applet again, this time using Netscape Communicator 4.7,
and was successful – to a point. The previous error never manifested itself; however,
the tip windows didn’t display with a warning banner (as I expected) and their screen
location was offset incorrectly, often nowhere near the control. I performed my next
test with Microsoft’s Internet Explorer version 4.0 (4.72.3110.8, to be exact). I didn’t
receive any errors, and the tip windows displayed – sort of. The problem with IE 4.0 is
that the warning banner completely obscures the tip windows, rendering the control
completely useless. Your mileage may vary with different versions of either browser.

0=User Id

1=Enter the user id

2=Password

3=Enter the password

4=Press to submit

5=Press to dismiss

39FEBRUARY 2000

Java COM

IBM
www.ibm.com

J A V A H E L P

Java COM

40 FEBRUARY 2000

nent’s screen location. The tip window is
created by instantiating a TipWindow
constructor only if the ResourceBundle
variable isn’t null. The TipWindow con-
structor is passed the java.awt.Frame
reference, the component’s help text
(retrieved via the java.util.ResourceBun-
dle getString() method using the com-
ponent’s name as the key) and the com-
ponent’s x and y screen coordinates that
are added to the mouse’s x and y coordi-
nates when the event occurred. The y
coordinate has an extra value added to it
to offset the tip window just below the
cursor when it’s displayed. The mouse-
Exited() method disposes of the tip win-
dow and sets the tip window variable to
null.

I’ve included a sample program (see
Listing 3) that demonstrates using the

tip window control. There are three
requirements for using it:
1. A TipWindowMouseAdapter object

must be instantiated.
2. A mouse listener must be added to every

control that requires a tip window.
3. Every control that requires a tip window

must be named via the java.awt.Com-
ponent setName() method.

The last requirement is the most impor-
tant, as the given component names are
used as keys in the properties file that con-
tains the tip window help text. Figure 1
shows the contents of the properties file
used in the sample program. I chose a sim-
ple naming scheme that assigns a zero-off-
set numerical value to each component as
it was added to the layout. Figure 2 shows
the program with a tip window displayed.

Summary
The code presented here is fully encap-

sulated and dynamic. No code changes to
the tip window classes are necessary when
GUI controls are added to or deleted from
a Java AWT program. The tip window can
be used as a simple help mechanism for
your Java program’s GUI controls.

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class TipWindow extends Window
{
private String message;
private int tipYCoord;
private final int slack = 4;

public TipWindow(Frame parent, String
message, int xCoord, int yCoord)
{
super(parent);

/* Set the message to display */
this.message = message;

/* Set the tip window's background color */
setBackground(new Color(255,255,220));

/* Set the tip window's font */
Font f = new
Font("Arial",Font.PLAIN,12);
setFont(f);

/* Retrieve the font's metrics */
FontMetrics fm = getFontMetrics(f);
tipYCoord = fm.getAscent() + slack/2;

/* Set the tip window's size based on
the font metrics */

setSize(fm.stringWidth(message) +
slack,fm.getHeight() + slack);

/* Set the tip window's location */
setLocation(xCoord,yCoord);

/* Display the tip window */
setVisible(true);

}

public void paint(Graphics g)
{
/* Draw the tip window's border */
g.drawRect(0,0,getSize().width -
1,getSize().height - 1);

/* Display the message */
g.drawString(message,slack/2,tipYCoord);

}
}

class TipWindowMouseAdapter extends
MouseAdapter
{

private TipWindow tp;
private Frame parent;
private ResourceBundle rb;

public TipWindowMouseAdapter(Frame par-
ent, String propFile)
{
this.parent = parent;
try {rb = ResourceBundle.get-
Bundle(propFile);}
catch(MissingResourceException mre){}

}

public void mouseEntered(MouseEvent evt)
{
Component comp = evt.getComponent();
Point p = comp.getLocationOnScreen();

try
{
if (rb != null)
tp = new TipWindow(parent,rb.get-
String(comp.getName()),p.x +
evt.getX(),p.y + evt.getY() + 20);

}
catch(MissingResourceException mre){}

}

public void mouseExited(MouseEvent evt)
{
if (tp != null)
{
tp.dispose();
tp = null;

}
}

}

import java.awt.event.*;
import java.awt.*;

public class TipWindowTest {

public static void main(String args[])
{

new TipWindowTestFrame();
}

}

class TipWindowTestFrame extends Frame {
Label lblUserId = new Label("User Id:");
Label lblPassword = new Label("Password:");
TextField tfUserid = new TextField(10);
TextField tfPassword = new TextField(10);
Button ok = new Button("OK");
Button cancel = new Button("Cancel");

TipWindowTestFrame() {

super();

/* Set the layout */
setLayout(new GridLayout(3,2,20,20));

/* Add components */
add(lblUserId);
add(tfUserid);
add(lblPassword);
add(tfPassword);
add(ok);
add(cancel);

MouseListener ml = new TipWindow-
MouseAdapter(this,"helptext");

/* Get the frame's components */
Component[] comps = getComponents();

/* Cycle through adding mouse listen-
er and naming components */

for (int i = 0; i < comps.length; i++)
{
comps[i].addMouseListener(ml);
comps[i].setName("" + i);

}

/* Add the window listener */
addWindowListener(new WindowAdapter()

{
public void windowClosing(WindowEvent

evt) {
dispose(); System.exit(0);}});

/* Size the frame */
pack();

/* Center the frame */
Dimension screenDim = Toolkit.getDe-
faultToolkit().getScreenSize();
Rectangle frameDim = getBounds();
setLocation((screenDim.width - frameD-
im.width) / 2,(screenDim.height -
frameDim.height) / 2);

/* Show the frame */
setVisible(true);

}
}

Listing 3

Listing 2

Listing 1

AUTHOR BIO
Pat Paternostro is an

associate partner with the
Tri-Com Consulting Group

located in Rocky Hill,
Connecticut.Tri-Com provides

programming services for
a wide variety of

development tasks.

FIGURE 2 The TipWindowTest program

ppaternostro@tricomgroup.com

41FEBRUARY 2000

Java COM

Digital
Parahna

www.digitalparahna.com

Distributed applications require the reliable
transfer of information between the various
layers of software. Guaranteeing the reliable
movement of data between these layers is
what keeps application architects up at
night. This is particularly true when the
application in question is deployed on the
Internet and interfaces to disparate systems
and environments. One solution to this
problem is to make use of a message queue
layer that can serve as the delivery mecha-
nism for data. Message queue technology
isn’t a new idea, but thus far most of the
solutions have been highly proprietary.
With the release of their SonicMQ prod-
uct Progress Software has weighed in
with a new offering based on the Java
Messaging API.

Progress first announced this product
back in June when they demonstrated it
as part of their application server. While
many of the app server vendors are fol-
lowing a similar path, Progress elected
to decouple the message queueing com-
ponent from their server and offer it as a
separate product, independent of any
single application server. SonicMQ is
built around JavaSoft’s Java Message
Service, a standardized framework for
managing interapplication communi-
cations. One of the keys to understand-
ing the need for message queue ser-
vices is that the connection between
disparate applications isn’t necessarily
a synchronous operation. Many corpo-
rate systems that offer a powerful,
graphical user interface perform the
majority of their transaction processing

on older, more proprietary systems and appli-
cations. In such an environment it doesn’t
make sense to force the user (or front-end
application) to wait for these back-office appli-
cations to complete their processing. As soon
as you allow the front-end application to con-
tinue working while the back-end system is
dealing with the transaction, you’ve crossed
the line from synchronous processing to asyn-
chronous processing. The trick is to ensure that
the data is successfully processed by the back-
end application. Placing a message queue in
the middle of these applications is the answer
to this problem.

Progress Software offers SonicMQ in three
different packaging options. The Enterprise
Edition is the most comprehensive, with sup-
port for an unlimited number of connections
and a multibroker architecture. Small business-
es (or interdepartment applications) can make
use of the Small Business Edition, which has a
limit of 50 concurrent clients. Programmers and
third-party developers can work with SonicMQ
through the Developer Edition, which is fully
functional but has a limit of five connected
clients and limited technical support.

Working with SonicMQ
I had the opportunity to see a preview of the

Enterprise Edition, but I also took the time to
register on the Progress Software SonicMQ site
and download the Developer Edition of the
software. The installation of SonicMQ under
Windows NT was a breeze; I was able to get the
software installed and configured in a matter of
minutes. JMS itself comes complete with a set
of high-level interfaces, but it’s up to the mes-jmilbery@kuromaku.com

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners
LLC, based in Easton, Pennsylvania . He has over 15 years
of experience in application development and relational
databases. Jim can be reached via the company Web

site at www.kuromaku.com.

Test Environment
Client/Server:
Dell 410 Precision, 128MB RAM, 14 Gigabyte disk drive,
Windows NT 4.0 (Service Pack4)

Progress Software Corporation
14 Oak Park
Bedford, MA 01730
Phone: 800 477-6473
www.progress.com

Java COM

42 FEBRUARY 2000

FIGURE 1 SonicMQ Explorer

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

A solution for distributed
application development

Progress
SonicMQ

REVIEWED BY JIM MILBERY

43FEBRUARY 2000

Java COM

Evergreen
www.evergreen.com

Java COM

44 FEBRUARY 2000

sage queue vendor (Progress in this case) to implement the various ser-
vices such as load balancing, error handling, security and administra-
tion. Once you have SonicMQ installed, it’s a simple process to start the
service, and then you can use the Explorer to take a look at your mes-
sage brokers (see Figure 1).

I found the user interface with Explorer to be a little sluggish, and
some of the user interface objects performed erratically, but the
interface itself is reasonably well designed. Through the Explorer
you can track events, monitor the various queues you create and
display charts that monitor key statistics, such as memory usage
and response time. As the data store for the messages, SonicMQ
supports a number of relational databases, including Oracle8i,
and comes equipped with an embedded Java database that is
automatically configured for you when you install the NT ver-
sion, making it easy to get up and running with SonicMQ. You
can control some aspects of the database configuration with
SonicMQ, but you have to use external configuration files and
batch scripts to do so. Even the command-line admin tool does-
n’t allow you to configure the database parameters, which is a
little disappointing. It would be nice to have a single interface
that managed all aspects of the server, but this isn’t a fatal flaw
by any means.

Progress supports the publish-and-sub-
scribe model as well as the point-to-point
model of messaging. They provide thorough
sets of examples for working with both kinds
of messaging with SonicMQ. I was very
impressed with the wide array of samples
that came with the development kit for Son-
icMQ. The folks at Progress took the time
and effort to build a series of well-con-
structed examples and then documented
them carefully in the online documentation
(which was very thorough). Messaging can
be a complex topic for developers, and it
helps to have simple and concise examples
at hand to learn the basics. I was particular-
ly impressed with the Java source files that
came with the examples. The developers left
them clean and well organized, so those of
you who aren’t familiar with the ins and outs
of JMS will find them easy to read.

As shown in Figure 2, I used the simplest
example in the bunch to get started.
Through SonicMQ you can broadcast a
message to users who’ve asked to subscribe
to the service. I found this to be a useful
example of how to get started with JMS. Once you understand the
basics, you can move on to the more sophisticated point-to-point
sample applications. Most developers are familiar with the pub-
lish-and-subscribe model from applications such as chat. With
this model a single message is delivered to groups of users that
have registered themselves as being interested in the “topic”
under which the message has been posted. You might leverage this
capability in your own applications for broadcasting system or
application messages to all currently connected users. Using JMS
as the programming model provides you with a standardized
framework, and using a commercial product such as SonicMQ
allows you to focus on the logic and not the plumbing. However,
from an e-commerce perspective the publish-and-subscribe model
doesn’t quite meet the needs of application developers. The alterna-
tive methodology is what JMS calls point-to-point messaging. Under
this model a message can be delivered to a specific queue for a single
client (the client being an application). Such a design ensures that a

message is read once and only once by a specified application. In a
scenario in which you’re submitting an order to a back-office fulfill-

ment system, this model becomes important to the success of the over-

all application. Once again, the sample applications were especially
helpful in working with this messaging model. SonicMQ provides a
“Talk” application that sends messages from one client application
through a specified queue to a second application using the point-to-
point model. The default installation of SonicMQ comes equipped with
the necessary message queues already configured to make this example
work; it was a simple process to start two separate client applications

and send messages between the two. Part of the larg-
er value proposition of a commercial message queue
application is the ability to make them independent
of the server. The Enterprise Edition of SonicMQ
offers the ability to cluster brokers, but you can still
test remote access with the Developer Edition. To
prove this point, I stopped one of the client applica-
tions on my local server and moved the code to a
remote workstation. The sample applications all
accept parameters for the host address, port number
and queue name, and it was a simple process to
restart the client and have it point to the existing
message queue on the other server. Just like that I
was passing messages between client applications
on different servers. (I even sent a message from the
first client application before I restarted the second
client on the new desktop, and SonicMQ kept the
message queued up until the client application
reconnected with SonicMQ.) Most of Progress’s
effort has gone into the design of the message server
itself, so most of the sample programs contain only
Java Message Server code. SonicMQ does come with
two Java package APIs, one for interfacing with
ActiveX and one for the SonicMQ Java client. The
Java client package provides classes for dealing with

some extensions to the JMS standard, such as handling XML messages.
However, as the sample programs demonstrate, you can stick to the JMS
standard API and build applications that are independent of the Son-
icMQ platform if you choose to.

Although the administrative interface with SonicMQ was workable, I
was not as impressed with the overall functionality of the Explorer UI.
Given the large number of enterprise features in the message server
itself, I’d expect this to improve as SonicMQ matures.

Summary
Many of the application server vendors have announced plans to inte-

grate message queue software into their application server products
(including Progress). SonicMQ offers a cost-effective, flexible solution
that’s independent of the application server layer. Progress has archi-
tected the product for high performance and reliability (although I did-
n’t test these claims). I’d recommend taking a look at SonicMQ as a solu-
tion for distributed application development, especially in considera-
tion of the wealth of example code and documentation that comes with
the product.

P
R

O
D

U
C

T

R
E

V
I

E
W

FIGURE 2 Chat example

I’d recommend

taking a look at

SonicMQ as a

solution for

distributed

application

development

‘‘

’’

45FEBRUARY 2000

Java COM

Applied
Reasoning

www.appliedreasoning.com

WRITTEN BY
TODD SCALLAN

& THOMAS KERN

Use standard middleware to implement a generic test tool

C
ritically important to the reliability of an application is how software compo-
nents work together and how resilient they are to change.This article discuss-
es how to perform functional testing on servers in the middle tier of distributed
applications.We’ll also address key middleware standards from the testing per-
spective, namely CORBA and Enterprise JavaBeans.

C O R B A C O R N E R

Testing plays a critical role in ensur-
ing the reliability of software applica-
tions. To better understand what this
means, we must consider the following
questions:
• How is software tested?
• When is software tested during the dif-

ferent phases of a project?

Let’s address the first question. Two
methods of testing are used: functional
and structural. The goal of the former is
to prove that a software program con-
forms to its specification. Usually the
tester reads the specification docu-
ments, creates a test plan and test data,
applies the tests and checks whether the
software behaves correctly. This method
is commonly referred to as “black box”
testing. Structural testing, on the other
hand, uses the software program’s source
code for the creation of test cases. For
example, you should ensure that all logi-
cal paths in the program code are exe-
cuted at least once. This is known as
“white box” testing. By looking at the
source code, dependencies with other
components can be determined and
input data can be chosen accordingly.

Present-day software development
often follows the object-oriented
methodology. Here the waterfall model
of “requirements—>design—>imple-
mentation—>test” has given way to a
highly iterative and incremental devel-
opment process.

This raises the second question:
When is software tested? Software test-
ing occurs at critical steps during the
development and maintenance phases
of a project:
• Component testing locates errors

within new software components
during development.

• Integration testing identifies errors in
interactions and interfaces of new,
untested modules. This can occur
during the development and mainte-
nance phases.

• Regression testing occurs during the
maintenance phase, ensuring that
software continues to work after
modifications are made.

As a project advances, the amount and
importance of functional testing increas-
es, while the amount and importance of
structural testing decreases (see Figure 1).
Structural testing is very important dur-
ing the development of a software com-
ponent. However, during integration the
focus shifts to interfaces and the interac-
tions between software components and
modules, not to the software’s source
code. Furthermore, if a project is based on
third-party components, the source code
is typically not even available, rendering
structural testing infeasible. When a pro-
ject enters regression testing, the source
code isn’t consulted at all.

Structural testing is limited to the def-
inition and execution of tests by the
software developer for a particular com-
ponent’s source code. (For Java classes
it’s also possible to perform structural
testing to a limited extent without
source code by analyzing the compiled
Java and then generating test cases.) Far
more important to the reliability of an
application is how components work
together and how resilient they are to
change, hence the importance of func-
tional testing.

Functional Testing of Nondistributed
Applications

Before exploring how to test multitier
applications, let’s first look briefly at
how nondistributed applications are
tested. Tests can be performed at two
levels: the user interface and the appli-
cation programming interface.

At the UI level a tester simulates the
end user, attempting to “break” the appli-
cation. Many automated tools are avail-
able for recording and playing back user
interactions with the UI. Although this
method is popular with quality assurance
departments, it’s entirely black box, so
the origin of errors is usually unknown.

At the API level a developer writes
specialized test drivers. The objects or
modules tested through the API must be
linked with the drivers. If they don’t have
published interfaces, the developer usu-
ally performs the API-level testing.

Implications of Multitier Applications
Modern distributed applications are

typically implemented in multiple tiers.
Distribution has a significant impact on
functional testing, as we’ll see shortly.
The three-tier architecture shown in Fig-
ure 2 has become quite pervasive, espe-
cially as applications continue to be
enabled for Web access.

Am
ou

nt
 &

 Im
po

rt
an

ce

Project Schedule

Maintenance PhaseDevelopment Phase

Regression Test...Integration Test...Component Test...

Functional ("Black Box") Testing

Structural ("White Box") Testing

FIGURE 1 Functional testing increases in amount and importance during a project
while structural testing decreases.

Java COM

46 FEBRUARY 2000

Functional Testing of Middle-Tier Servers

47FEBRUARY 2000

Java COM

PointBase
www.pointbase.com

Within the three-tier architecture the
first tier represents the presentation and
interaction layer, such as a Web browser
in a typical e-business application. The
middle tier consists of the application
logic, which can be constructed as busi-
ness objects. These business objects
may be new applications or existing
ones that are encapsulated so they can
be integrated into the environment. The
third tier includes data repositories,
such as relational or object-oriented
databases.

Business objects, the most prominent
part of the three-tier architecture, are
the building blocks of a distributed
application. As such, they can be located
anywhere across a network and can be
accessed transparently by client pro-
grams regardless of physical location.
The underlying communication infra-
structure is responsible for ensuring
that a business object can be found and
accessed.

Business objects also provide trans-
parency to application developers by
hiding networking and communication
details. This allows an object to be
implemented in the programming lan-
guage that’s most appropriate for a par-
ticular task. Ideally, method invocations
can be made in the native programming
language of the caller and automatically
mapped into the language of the target
object.

Performing functional tests on dis-
tributed applications requires a signifi-
cant amount of API-level testing, which
is considerably more complex in com-
parison to testing nondistributed appli-
cations. A typical distributed applica-
tion comprises many application mod-
ules that span different operating sys-
tems and network connections. There
are multiple participants in the develop-
ment and testing of a distributed appli-
cation, which makes coordination a
challenge. In the Internet age, changes
to software can occur frequently with
very short delivery cycles. Furthermore,
changes to distributed applications,
such as those supporting e-commerce

on the Web, must be introduced incre-
mentally without bringing down the
entire system.

All of this complexity poses a dilem-
ma for the tester. Which part of the
application has failed? Who’s responsi-
ble – the UI developer, business object
developer or database administrator?
What’s going on within the business
object? Using standard middleware can
greatly alleviate this situation, as evi-
denced by the growing use of CORBA as
the communication backplane for busi-
ness objects, and Enterprise JavaBeans
as a standard for server application
components.

Standard Middleware for Objects
and Components

Middleware provides a means for
integrating business objects in the mid-
dle tier (see Figure 3). CORBA is a pro-
ven middleware standard for enabling
object-level communication in multitier,
multilanguage systems. From an appli-
cation perspective, CORBA provides
tremendous flexibility, but may present
an abstraction level that’s too low for
some projects. In other words, the object
paradigm supported by CORBA forces
the programmer to define the applica-
tion framework in addition to the busi-
ness objects. (Note: The recently adopted
CORBA Component Model should raise
CORBA’s abstraction level to be compa-
rable with Enterprise JavaBeans. Please
read on.)

The EJB specification is another mid-
dleware standard. It’s much newer than
CORBA, but is evolving – that is, matur-
ing technically and gaining market
acceptance – rapidly. EJB is a compo-
nent paradigm that has gained recent
prominence with the advent of applica-
tion servers for three-tier development.
In the EJB model a programmer writes
code to implement specific business
objects. A standard container supplied

by someone else handles the rest. All
requests from outside the programmer’s
component are directed to the contain-
er, which is responsible for executing
the correct code within the object
implementation. The container and the
object communicate through a protocol
that is well defined by the EJB specifica-
tion.

EJB can be thought of as an abstrac-
tion layer that can exist on top of
CORBA. So while standard middleware
eliminates some of the uncertainty
within a distributed environment, hav-
ing multiple standards may also require
testing at different levels.

Testing Middle-Tier Servers
Standard middleware provides a con-

venient way to develop business objects,
but is it possible to perform functional
testing of objects independent of an
application user interface? Fortunately,
the answer to this question is Yes.

The basic approach to functionally
testing business objects is to substitute a
generic test tool in the “Presentation &
Interaction” tier (see Figure 3) that can
work directly with the business objects.
In other words, impersonate the expect-
ed caller of the server. Such a test tool
must address the following three chal-
lenges:
1. How to obtain information about object

interfaces: To solve this first challenge,
published interface descriptions can
be accessed through mechanisms pro-
vided by standard middleware. For
example, CORBA provides the Inter-
face Repository, which contains inter-
face descriptions that can be accessed
at runtime. EJB utilizes JNDI for locat-
ing objects and metadata descriptions
for home and remote interfaces, bean
type and business methods. A generic
test tool would have a user interface
through which information about a
business object’s interface could be

C O R B A C O R N E R

Java COM

48 FEBRUARY 2000

Presentation
& Interaction

Business Objects Data

1 2 3

FIGURE 2 Three-tier architecture

Presentation
& Interaction

Business Objects Data

Middleware

FIGURE 3 Three-tier architecture utilizing standard middleware

presented. Details about an interface
include available methods, method
parameters, return values and possible
exceptions.

2. How to invoke methods: In a generic
test tool it would be impractical to
require compilation of static object
descriptions into the tool. Instead,
dynamic invocation should be used to
create method calls as needed by the
tester. Fortunately, CORBA’s dynamic
invocation interface (DII) and Java’s
reflection API support dynamic dis-
covery of interfaces and the creation of
method calls on the fly. The test tool’s
usage model must allow selection of a

method to test, visual creation and
editing of arguments, and immediate
viewing of results and exceptions.

3. How to record and replay: Requests
and replies made through a tool
should be saved using a suitable
external data representation, such as
XML. The user should be allowed to
decide which actions to record and
save for future use. The test tool
would then interpret the external data
to replay a session. The external data
could also be used to generate stand-
alone test clients. These capabilities
are required to support regression
testing.

Standard middleware, such as CORBA
and EJB, makes it possible to implement
a generic test tool (see Figure 4). This is
achieved by meeting the challenges of
obtaining interface details, constructing
and executing method invocations, and
recording test sessions.

Conclusion
When considering how to perform

funtional tests on middle-tier servers,
look for the following:
• Time and money savings: A good test

tool should eliminate the need to
build custom test programs and to
manually create regression test cases.

• Investment protection: Test tools and
procedures should be built on open
industry standards so that technology
investments are protected.

• Productivity improvement: Test pro-
cedures should be clear and intuitive.
Test automation tools should offer
ease of use.

• Successful deployment: All server
components within a distributed sys-
tem should be properly tested, there-
by increasing your confidence that
the application will work in produc-
tion.

AUTHOR BIOS
Todd Scallan is the
director of product
management for Segue
Software’s distributed
computing products. He
holds a BS in electrical
engineering from Lehigh
and an MS in computer
engineering from
Syracuse.

Thomas Kern has 12
years of experience in
systems programming and
application development
for UNIX and NT. He is
coauthor of a book about
programming the
X Window System
and Motif.tscallan@segue.com / tkern@segue.com

49FEBRUARY 2000

Java COM

Tests

Generic Test Console

Test
Client

Business
Object

Interface
Descriptions

reply/exception

connect

read

invoke method

set/get attribute

G
eneraterecor

d

replay

connect: stock_exchange
 Invoke: buy
-> symbol: SEGU
-> amount: 1000
<- confirmation:

FIGURE 4 Testing a business object in the middle tier

QuickStream
www.quickstream.com

The JProbe ServerSide Suite, version
2.5, consists of three related tools: a Profil-
er/Memory Debugger, a Threadalyzer
and a Coverage product. All can use the
LaunchPad to start profiling sessions
against applications, applets and servlets,
or use their built-in launch facilities

Each product takes a different approach
to making your Java code more solid. The
Coverage tool helps test all source code
paths, the Profiler/Memory Debugger is
used during development and later during
production to tune the code, and the
Threadalyzer helps to identify (potential)
locking/synchronization issues.

With the direct support of Java 2 (using
the JVM debugger and profiler inter-
faces), KL Group removed one of the
main differentiators of the product. Earli-
er versions relied solely on instrumented
JVMs to provide accurate measurements,
but only approximated the real produc-
tion environment (instrumented ver-
sions of JDK 1.1.7 and 1.1.8 are still sup-
plied with the product). The Java 2 sup-
port is excellent, providing line-by-line
detail not directly available using the
JVMDI/JVMPI APIs. Note that the Solaris
production version of Java 2 doesn’t sup-
port the JVMDI or JVMPI required by
JProbe, so you’re still only approximating
the real environment on Solaris. KL Group
is working toward providing support for
the Solaris Java 2 production version.

All three products use a similar
metaphor of “snapshots” that can be
loaded from and saved to a disk, given
names and unloaded. These show up on
the left-hand panels of the products. Snap-
shots can be redisplayed, analyzed and
merged if appropriate. The right-hand pan-
els display information specific to the snap-
shot, allowing drill-down actions where
appropriate. Pattern-based filtering can be
used to (de)select which packages/classes are

of importance. Triggers are also provided that
permit specific actions (e.g., starting/paus-

ing/stopping/clearing event recording) when a

class (or one of its specified methods) is entered
or exited. Filtering and triggers allow you to set
up sophisticated testing schemes, but you pay a
maintenance price, especially on “moving tar-
get” complex products with frequent API
changes. The tools let you control a JVM that’s
executing remotely, but the detailed debug
information generated needs to be delivered in
a separate way (perhaps mounted drives or
something similar). Although there’s no way to
run all three tools in parallel against the same
JVM, the same start-up files can be used for the
different tools from the command line. For
many tables in the product there are popup
menus that allow you to show more columns in
the tables. (In most tables package names
weren’t displayed by default.) I noticed GUI
refresh problems and misreported line num-
bers; also, the keyboard scrolling doesn’t seem
to work in the built-in source browser. Com-
mand-line options are available for all three
tools and their API is also documented in the
help files.

Let’s look at the tools one by one. When
using the LaunchPad, you need to select one of
the three modes of operation; the selected
viewing tool can then be attached to the JVM
that’s running (see Figure 1). LaunchPad func-
tionality can be invoked from the command
line, allowing extensive configuration file and
parameter-based scripting. In addition to con-
trolling the data collection of LaunchPad by the
other tools, this allows standalone data collec-
tion operation, with the resulting files later
analyzed by the other tools. I found some
inconsistent behavior when using the Launch-
Pad. It didn’t restore the JVM version selected
or the triggers for other modes of operation
when switched between them. Sometimes the
interaction between the LaunchPad and the
other tools wasn’t well synchronized. For
example, in some cases the Profiler and the
LaunchPad weren’t pointing to the same snap-
shot directory or were running different JVMs,
causing strange errors. These different settings
may be desirable when running several
instances of LaunchPad on different TCP/IP
ports, but one would think that the two appli-

http://gliptak.homepage.com/

AUTHOR BIO
Gabor Liptak is an independent consultant with more
than 10 years of industry experience. He is currently

an architect of a Java e-commerce project.

KL Group
260 King St. East
Toronto, Ontario
Canada M5A 4L5
Phone: 800 663-4723
www.klgroup.com
e-mail: javainfo@klgroup.com

Installation Requirements:
On Microsoft Windows 4.0 or Windows 95/98:

64MB RAM – 40MB disk space
Java 2 installed separately

On Solaris 2.6/2.7:
96MB RAM – 70MB disk space
Java 2 (reference version) installed separately

Pricing: ServerSide Suite: $1,899
(lower prices available for separate components and

Professional Edition)

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

JProbe
ServerSide
Suite,V 2.5
A tool with powerful servlet
and server-side application-

tuning capabilities

REVIEWED BY GABOR LIPTAK

Java COM

50 FEBRUARY 2000

FIGURE 1 JProbe LaunchPad

51FEBRUARY 2000

Java COM

Sybase
www.sybase.com

Java COM

52 FEBRUARY 2000

cations would be synchronized during connection time. Programs can
be run from the tools without using the LaunchPad, but in this case
there seems to be no way to load/save the arguments set.

The Profiler/Memory Debugger has the busiest interface of the
three products, because of its extensive visualization and drill-down
capabilities (see Figure 2). The tool presents a twofold approach in
which the Profiler generates both the timing and the number of
object allocation snapshots, and the Memory Debugger generates
object reference graphs in memory. While the timing approach is the
more usual one, the number of objects generating information is of
great importance because of the cost of creating/destroying
objects. Also, analyzing object reference graphs helps identify
potential memory leaks, when objects are kept from garbage col-
lection, by referencing them unintentionally. Instead of generating
differences between snapshots taken at the different times, the
tool allows you to do counts relative to a cleared baseline. Even
when helped with the well-done UI of the tool, the information
presented doesn’t always map easily into a good understanding of
where the bottlenecks are in complex situations. Finding real
problem areas requires iterations, and the ability to set up/save
filtering and triggers definitely helps.

Threadalyzer (see Figure 3) has the fattest documentation of
the three tools, indicating that it’s conceptually different from the
usual profiling tools. As described below, different levels of
analysis are available, and running some of them slows the
application to a crawl as it cross-inspects variables and where
they’re accessed. According to the documentation, thread is
expected to behave differently under different JVMs, so it’s wise
to run your production JVM with the Threadalyzer tool, which is
a concern with Solaris. The tool looks for the following thread-
related problems:
• Deadlocks: When resources are locked in a different order on

more than one thread
• Potential deadlocks: Holding a resource while in a wait state

and locking order differences between threads
• Thread stalls: When a thread is in a wait state longer than the

threshold set
• Data races: When different threads try to read/write the same

variable at the same time; detected using “happens before”
and “lock covers” algorithms

As analyzing requires no instrumentation of the code, it can
also be used to discover problems with system or third-party
libraries, and it may prove very useful in testing for multithread-
ing issues in Swing code. A visualizer option is also included,
allowing a quick overview of all threads and their state. The user
will likely see many false alarms when using the tool, as men-
tioned in the documentation supplied, but the nice tool layout
will help you narrow in on the important ones. The tool is useful
to stress-test code with complex threading, but because thread-
related states are difficult to (re)create, you may still want to con-
tinue reviewing any code with complex threading.

The easy-to-use Coverage tool fits nicely with the other debug
tools, as it uses the line number in file information to create a line-
level detail coverage map (see Figure 4). It lets you merge generat-
ed coverage maps and view the results of several runs, perhaps
with different start-up parameters as one map. It also generates
detailed summary reports in HTML format. The merging and
reporting functionality are also available as standalone programs,
and the Java API of the Coverage tool allows extensive automation.

JProbe hooks into Symantec’s VisualCafé and IBM’s VisualAge,
allowing you to launch the tools from the menu and editing source
files inside their environment. It also allows easy export of files from
VisualAge’s built-in source-control repository. The ServerSide Suite

also provides templates to connect to several servlet engines (includ-
ing JRun, WebLogic, WebSphere, Servlet Runner), enabling easy profil-

ing of servlets in these different environments.

I noticed several problems with the tools. I had crashes in both the
JProbe tools and the JVM itself – maybe the JVMDI/JVMPI interfaces
were overexercised. Another problem was nonintuitive handling of the
“current directory” in complex projects – in many cases you need to
repoint the tool to a source file you used a second ago even though it’s
relative to the current directory specified in your project and/or could
be located using your CLASSPATH.

Even with these annoyances, JProbe is a recommended tool for both
client and server-side code development.

FIGURE 2 JProbe Profiler and Memory Debugger

FIGURE 3 JProbe Threadalyzer

FIGURE 4 JProbe Coverage tool

P
R

O
D

U
C

T

R
E

V
I

E
W

53FEBRUARY 2000

Java COM

MetaMata
www.metamata.com

This is the age of mergers, acquisitions
and business marriages. In the early part
of the last century there were mergers in
the manufacturing and electronics
industries. In the last quarter there was a
wave of mergers and acquisitions in the
telecom industry. That wave is still alive.
One of the areas that has seen substan-
tial growth in the past few years, espe-
cially this last year, is the field of applica-
tion servers in the software industry. Tool
vendors are defining and redefining their
turf and areas of expertise. The norm is
to establish oneself in a niche market,
get a substantial cash flow going (or a
perception of future profitability), seek
out other companies that can comple-
ment and enhance the business, then
partner, acquire, or merge businesses to
gain a larger market share.

In December’s e-Java column I wrote
about how the middle tier may be split
into two logical tiers: one to handle the
business logic, the other to handle presen-
tation of the data to the client. The middle
tier is currently the territory of application
servers. In this article we’ll examine how
application servers have grown from well-
defined niche markets into one-stop
shops for middle-tier applications.

Two Opposing Evolutions
There are two opposing evolutions

taking place in today’s application server
market. One has resulted in the splitting
of distributed architectures into multiple
tiers. The other has vendors scrambling
to own as many of these tiers as possible
to expand their business. The three-tier
model of distributed computing easily
expands into an n-tier model. Note: The

expansion of the tiers involves splitting
the middle tier into functionally distinct
tiers. The client and data end tiers remain
more or less the same.

The middle tier is essentially an appli-
cation service layer, which means the
functionality of the middle tier makes it
possible to serve up data to the layers in
the upper tiers of a distributed applica-
tion. As the technologies that enable
these services became standardized,
third-party vendors started offering
these services. The middle tier in most
three-tier applications isn’t implement-
ed as a monolithic program, but as a col-
lection of components and services that
are used in a variety of business transac-
tions. This allows for more portable and
reusable services. A side effect of this dis-
tribution of services is that different ven-
dors have identified niche markets in
which to start hawking their wares. Thus
Web servers, TP monitors, groupware

servers, pure database servers and the
like evolved into middle-tier services.

While the vendors of existing server
technologies migrated their products to
the middle tier, distributed component
models, such as EJB and COM, and dis-
tributed object frameworks, such as
DCOM, RMI and CORBA, started solidi-
fying. This opened up the market for
new vendors to come into the arena by
providing green field implementations
of these completely new technologies.
Then came the ORB vendors – Postmod-
ern Computing, IONA and ObjectSpace
– and the EJB vendors – WebLogic and
Persistence. Once these vendors estab-
lished a market niche, they started pro-
viding tighter integration with existing
middleware services. This led to mergers
and acquisitions. Some examples:
• Visigenic acquired Orbeline. Borland, a

Java/C++/Delphi IDE vendor, acquired
Visigenic to offer complete CORBA
middle-tier services coupled with a
development environment. The result-
ing company was renamed Inprise to
better reflect their enterprise-level
presence. The current application serv-
er offering is called Inprise Application
Server.

• BEA Systems acquired WebLogic to
combine TP monitor functionality
with EJB offerings. Recently BEA
acquired Symantec’s VisualCafé Java
development tool in conjunction with
Warburg, an investment bank.

• Sun Microsystems acquired NetDy-
namics to add application server ser-
vices to their existing toolset. They also
acquired I-Planet to add VPN, authen-
tication and virtual desktop services.
Recently they acquired Forté to add e-

The one-stop shop for middle-tier applications

A
llow me to start this month’s article with a
short, albeit contrived, bedtime story. Once
upon a time Jack and Jill, two childhood friends,
moved into a backward village by the seashore.
The residents of this village would catch fish
using rudimentary tools they manufactured

individually. Jack and Jill saw a business opportuni-
ty. Jill started manufacturing fishing nets, and Jack,
fishing rods. Since Jack and Jill focused exclusively
on these tools, their nets and rods were well
designed and effective. Business thrived, the econ-
omy boomed and both friends prospered. In the

meantime, two villagers, Jane and Joe, saw the
opportunity to start their own businesses for man-
ufacturing nets and rods, respectively. By this time,
a rivalry had developed between Jill and Jack. Jill
decided to expand her business by buying out Joe,
who just had a little start-up shop, and she started
offering discounted fishing nets with her rods. She
would have bought out Jack, except that his busi-
ness was too expensive. Jack retaliated by buying
out Jane.To further cement their relationships, Jill
married Joe and Jack married Jane, and they all
lived competitively ever after.

E - J A V A

The Application Server Turf

54 FEBRUARY 2000

Java COM

WRITTEN BY
AJIT SAGAR

This is the age

of mergers,

acquisitions

and business

marriages

‘‘

’’

55FEBRUARY 2000

Java COM

New Atlanta
www.newatlanta.com

AUTHOR BIO
Ajit Sagar is a member of

the technical staff of
i2Technologies in Dallas,

Texas, focusing on
Web-based e-commerce

applications and
architectures. A

Sun-certified Java pro-
grammer with nine years

of programming
experience, including

three in Java, Ajit holds an
MS in computer science

and a BS in
electrical engineering.

E - J A V A

Java COM

56 FEBRUARY 2000

commerce functionality. The current
offerings from Sun are in the form of
the I-Planet Netscape Alliance Server.

• Allaire Corporation acquired Bright-
Tiger technologies to add clustering
and load balancing to their ColdFu-
sion application server. This was fol-
lowed by an acquisition of Live Soft-
ware to add Java connectivity via
servlets to their offerings. Recently
the company acquired Valto systems,
a small EJB vendor, to complete inte-
gration into Java middleware.

• SilverStream acquired GemLogic and
ObjectEra to add XML integration to
its application service offerings.

Not all of the application service pro-
viders have grown strictly through acquisi-
tion. IBM has developed a suite of applica-
tion server products under its WebSphere
family. Oracle offers an Oracle Application
Server. Of course, the Microsoft platform
offers competitive application services in
the Windows environment.

Java and Application Servers
Web application servers have recently

gained a lot of popularity since Sun
completed its story on Java in the mid-
dle tier. Since J2EE was announced, it
became clear what specs the application
servers in the world of distributed com-
puting will need to support. Virtually
any application server vendor in the
market today needs a well-defined strat-
egy on how they’re going to provide J2EE
implementations in any product line
that’ll survive the next year.

XML and Application Servers
Application server vendors who want

to stay in the market over the next few
years will have to clearly define the
hooks for XML integration. XML is likely

to become the lingua franca of Web data
formatting and presentation in the years
to come. Vendors are either providing
XML integration tools that are built in-
house or are integrating with third-party
XML integration tools. This year should
see several mergers and acquisitions
between existing application server ven-
dors and XML product vendors.

Business Logic and Storefront
In December’s column I identified two

kinds of Web application servers that are
representative of “vertical” tiers in a dis-
tributed architecture. One is the Web-front
server that focuses primarily on building
an online storefront via customer interac-
tion and data presentation. The other kind
of application server concentrates on
business logic and integration to more
complex legacy systems. As the applica-
tion servers coalesce and extend their
functionality, this line will blur. Two of the
market leaders in these categories are
Allaire’s ColdFusion and BEA System’s
WebLogic application servers.

As mentioned above, both these prod-
uct families have grown through acquisi-
tions as well as green field implementa-
tions. It’s interesting to note the different
approaches taken by these two vendors.
Allaire started at the Web front. Their ini-
tial offerings included Web site building
products such as HomeSite and ColdFu-
sion Studio, coupled with the ColdFusion
Application Server for dynamic content
generation. Allaire offered niche func-
tionality that made ColdFusion popular
by allowing HTML pages to easily access
various data sources, thus eliminating
the need for middle-tier integration to
data stores. Hooks to security, mail and
other services were also presented to
complete the offering for building a
storefront. To extend the other standard
services that have become the flagship
of application servers today, Allaire
acquired BrightTiger for its clustering
and load-balancing capabilities. Until
then, Allaire had no presence in the Java
world. The acquisition of Live Software
enabled their Java connectivity. Allaire
then announced Spectra, a packaged sys-
tem built on ColdFusion for content
management, e-commerce and person-
alization. They also defined WDDX, an
XML-compliant serialization mechanism
that allows applications to access objects
written in different programming lan-
guages. With their recent acquisition of
Valto Systems, Allaire’s application server
suite offers end-to-end services in dis-
tributed Java computing. Allaire says that
it provides the only Transaction Server
and Message Queue Server based purely
on the Java platform.

BEA started from the other end. BEA’s
Tuxedo has been a very popular product in
the world of transaction processing. BEA
expanded into the Java middleware with
its acquisition of WebLogic, one of the first
vendors to adopt the EJB standard. This
acquisition created one of the first compa-
nies to offer highly scalable and robust
solutions in the EJB application server
space. Because of their origin, the integra-
tion focus was on providing high-quality,
reusable database drivers for accessing
data stores in the data tier. IMHO, for high-
ly scalable, high-transaction volume sys-
tems, the BEA product suite offers one of
the best choices in the market. However,
BEA didn’t really have any sophisticated
development tools to boast of. Their recent
acquisition of Symantec’s VisualCafé IDE
completes their story on the Web front.

Trading Places
The two examples of application server

vendors I’ve highlighted in this article
should give you a flavor of how the appli-
cation server space is expanding. Note
that both have their areas of strength –
their turf, so to speak. Companies like
BEA will, at least for the next year, contin-
ue to offer solutions in large, high-trans-
action volume installations. However,
they’ll gradually expand into the store-
front and maybe target smaller compa-
nies as they gain market share. Compa-
nies like Allaire will probably look at cap-
turing the mid-to-small installations,
especially the ones that already have
exposure to ColdFusion. However, soon
the application server vendors will start
stepping on each other’s toes. For the
development and e-business community
this is all good news. We should see a lot
more options, better prices and better
support as the application server vendors
are forced into competing with each
other. At the same time, the drive for stan-
dards will ensure that consumers are not
locked into specific vendor products.

ajit@sys-con.com

Not all of the
application

service providers
have grown

strictly through
acquisition

‘‘

’’
Soon the

application
server vendors

will start
stepping on

each other’s toes

‘‘

’’

57FEBRUARY 2000

Java COM

American
Cybernetics

www.softexport.com

Java COM

58 FEBRUARY 2000

Begin Domino development without learning a new language

M
uch to their credit, Lotus recognized the momentum of Java. How could they
miss it? Consequently, they moved quickly to integrate it into the Domi-
no/Lotus Notes paradigm. Java support was added to the Domino family of
products beginning with version 4.6 in 1998. The support was minimal, with
documentation hard to obtain, but it was just the beginning.

J A V A & L O T U S D O M I N O

Domino and Java, Finally

WRITTEN BY
TONY PATTON

During the same time, Lotus introduced
the eSuite and Bean Machine products.
Bean Machine is a rapid development
environment for building Java applets. It
was later sold to NetObjects (another IBM
Company), makers of the Fusion Web site
development tool. The eSuite family
included a set of business productivity Java
applets and a Java thin-client application
for use on the once much-publicized net-
work computers. It was recently discontin-
ued by Lotus and will be covered later in
the article. Lotus may have dropped one or
two products, but Lotus Notes/Domino
continues to flourish.

Domino
The latest incarnation of the Lotus Web

Application Server, Domino 5, has fully
embraced the plethora of Internet stan-
dards. It makes Domino a robust Web
development server/platform. Java, along
with the added support for numerous Inter-
net protocols (such as IIOP, CORBA, HTML,
POP, IMAP and SMTP), makes it reality.

The following features have been
added and/or improved:
• The Notes/Domino IDE (Integrated

Development Environment) has been
expanded to support both Java and
JavaScript. The IDE isn’t a replace-
ment for something like IBM’s Visual-
Age or Symantec’s VisualCafé, but it
can verify syntax/grammatical errors.

• Java applets can be imported into
Notes/Domino forms to take advan-
tage of replication for distribution.
Normally, Java applets need (must
have) a Web server to be accessed by
browser-based clients. This is still
true, but the Notes client software
provides full applet support.

• Domino data can be accessed
remotely by applets on other Web
servers/clients via CORBA.

• The world of Lotus Notes/Domino
development has now been opened to
Java developers. The Java interface
can be used within the Notes develop-
ment environment or by standalone
Java applications or applets to access
Domino data.

• The Domino server supports Java
servlets that can be used to replace
CGI programs. The Domino server
includes a servlet engine; however, a
third-party servlet engine can be used
as well.

• The Domino HTTP server engine can
serve up standard HTML files as well
as Domino databases. The data with-
in a Domino database is converted to
HTML/JavaScript on the fly.

The Domino Designer application is
used to develop Domino-based applica-
tions. Figure 1 shows the Designer client
when first opened.

Application Structure
A brief introduction to the Domino

environment is necessary at this point. A
Domino application can be thought of
as a group of object containers. The out-
ermost container is the database, but
the term database isn’t used in the sense
of the relational world of Informix or
Oracle. A Domino database is a database
of unstructured data stored as objects; it
isn’t a relational database. A database
can contain document objects that in
turn contain field objects. Documents
contain data, and forms are used to
enter and view the contents of a docu-
ment. Document objects can be viewed
using the Domino view or folder object.

At the most basic level, data is entered
and presented in a Domino database via a
form. The data entered/presented is stored
as a document and is saved separately from
the presentation/entry. Users browse a view
or folder to select documents for viewing.

FIGURE 1 Domino Designer

59FEBRUARY 2000

Java COM

4th Pass
www.4thpass.com

Java COM

60 FEBRUARY 2000

AUTHOR BIO
Tony Patton works

with Transaction
Information Systems, Inc.
(www.tisny.com).Tony is

certified in Sun Java, IBM
VisualAge and Lotus

Domino.

J A V A & L O T U S D O M I N O

Domino Java
Now that we have an elementary

understanding of the Domino environ-
ment, let’s take a look at where Java fits
into the Domino development land-
scape. All Domino objects (database,
forms, documents, views, etc.) are fully
exposed and accessible in Java. Applets,
standalone applications, servlets and
native Domino agents can be developed.

Agents are standalone programs that
perform a specific task in one or more
Domino databases. They allow tasks to
be scheduled, or triggered by an event or
a user request. The functionality of an
agent and a servlet overlap in many
areas, but Lotus developed the agent
structure before servlets existed.

Figure 2 shows a Domino database
opened in the Designer client with a new
Java agent being entered. The IDE allows
you to name the agent, and the code pane

is where the actual Java code is entered.
The Help provided on the left-hand side
of the IDE is a nice feature. It contains two
tabs: Figure 2 shows the classes tab that
shows the hierarchy of the current agent,
and Figure 3 shows the online help avail-
able for traversing the Domino and Sun
Java Classes’ hierarchies.

The code we developed in Figures 2
and 3 instantiates a Domino database
object and gets the number of docu-
ments in the database. It’s a simple
example that demonstrates the ease
with which you can develop your own
Java code.

Third-Party IDEs
A third-party IDE can be used by those

with the need/desire for a more robust
development environment. The Domino
Designer IDE is functional and adequate,
but the limits are quickly realized on

large-scale development efforts. An IDE
such as IBM’s VisualAge for Java, Syman-
tec’s VisualCafé or Borland’s JBuilder can
be used with no problems. The environ-
ments of each must be properly set up
before proceeding. This entails making
the Domino classes available (JAR files
located in the Domino installation direc-
tory) to the IDE, which may involve set-
ting a path/classpath variable (Café) or
actually importing the classes into the
environment (VisualAge).

My favorite Java IDE, VisualAge for
Java, includes instructions and samples
for Domino development. This is no sur-
prise given the fact that IBM produces
both. It’s nice to see two arms of the IBM
behemoth working together.

JDK
You should be aware of the JDK ver-

sion if you do choose to develop Domino
Java code in a third-party IDE. The cur-
rent version of Domino is 5, and it sup-
ports JDK 1.1.x. The JDK is part of the
Domino application, and it can’t be
upgraded independently. That is, you
have to wait for Lotus to issue an update
that includes a JDK update before taking
advantage of a newer JDK. This can be a
bit frustrating. Lotus hasn’t announced
plans for adding JDK 1.2 support.

Conclusion
If you’ve made it this far, you may be

asking, Why should I care? Well, you’re a
Java developer, and another piece of the
development market has opened itself up
to you. You have the Java skillset that
enables you to quickly begin Domino
development without having to learn a
new language. The curve is steeper if you
have to learn a new environment as well as
a new language, so half the work is done.

This has to be one of the main reasons
that Lotus has embraced Java with so
much zest. A huge talent pool has just been
made accessible to those needing Domino
development help. IBM’s massive Java
push had to be another factor as well.

In my opinion, Domino is the most
powerful Web development server/plat-
form on the market today. It’s a com-
plete solution out of the box. It provides
a robust security model, e-mail capabil-
ity, full Internet standards support,
workflow, enterprise integration and
replication out of the box. The Domino
server runs on all major operating sys-
tems, such as Solaris, AIX, AS/400, NT
and Linux. Yes, it does have a version for
Linux. Combine the power of Domino
with Java and the sky’s the limit.

tpatton@tisny.com

FIGURE 2 Domino Java Agent

FIGURE 3 Domino Java Help

61FEBRUARY 2000

Java COM

SIC Corporation
www.access21.co.kr

Java COM

62 FEBRUARY 2000

Object
www.object

Design
tdesign.com

63FEBRUARY 2000

Java COM

WRITTEN BY
JASON WESTRA

E-Business with EJBs

E J B H O M E

I
expect great things from Enterprise JavaBeans this year, one
of which is dominating the e-business front as the component
model of choice for server-side application development.

An e-business solution could mean the difference between life and death

Java COM

64 FEBRUARY 2000

Giving House Calls a New Meaning
E-business is multifaceted, encom-

passing e-commerce (monetary trans-
actions over the Internet), business-to-
business solutions and internal Web-
based applications that provide flexibili-
ty and innovation in the services com-
panies offer. E-business innovation has
improved customer care and fostered
repeat business for companies like Ama-
zon.com, Dell and numerous online
investment sites, to name a few.

However, early last year I was fasci-
nated by the story a friend told me about
her father, a radiologist from Boston,
who used e-business technology to pro-
vide an extremely valuable solution to
his customer, a patient with a fractured
leg. During a visit to her home, my
friend’s father received a request on his
cell phone for his opinion on a patient.
He logged onto the hospital’s Web site
with his daughter’s laptop and diag-
nosed the fracture by viewing X-rays
over the Web!

This article provides a similar demon-
stration of the value of e-business above
and beyond e-commerce. And if you
had any doubts, the e-business solution
I provide in this month’s EJB Home,
Acme HealthCare’s e-Patient, is based
on the following technologies: Enter-
prise JavaBeans and Java servlets. E-
Patient is by no means industrial
strength, but it’s been developed with
techniques not yet covered in EJB
Home, such as EJB Handles and stateful
session beans. I’ll also provide ideas that
I’ll address appropriately in a future arti-
cle on how to improve the application in
the areas of robustness and perfor-
mance.

Acme HealthCare’s E-Patient
Requirements Overview

The doctors at Acme HealthCare
wanted the ability to enter and review
patient information – even diagnose
patients – by way of the Internet. In par-
ticular, doctors who had practices span-
ning multiple hospitals needed to be
able to perform an initial “distributed”
diagnosis from one location, then finish
the patient assessment once they arrived
at the hospital where the patient was
located. Two use cases were modeled to
cover usage of the e-Patient application
(see Figure 1):
1. Enter Patient Info
2. Diagnose Patient

In Enter Patient Info the actor is either
a nurse or a doctor. He or she enters the
patient’s history into the Patient Infor-
mation Form and submits it. The next
use case, Diagnose Patient, involves the
doctor’s entering a diagnosis and sub-
mitting it.

If a nurse was the actor in the Enter
Patient Info use case, he or she must call
the doctor to say that a patient record
needs to be reviewed. The doctor who

receives the call pulls up the patient
record in a browser to make the initial
diagnosis, which provides an avenue for
others to treat the patient until the doc-
tor arrives.

Acme HealthCare’s E-Patient Technical
Overview

The Java platform has all the neces-
sary elements to solve the business
requirements. The technical solution
presented below specifically involves
Enterprise JavaBeans with view and
controller responsibilities handled in
Java servlets. Included in the design are
a simple static HTML form (see Figure 2)
and a servlet that processes the submit-
ted data. The current design doesn’t
include a database, but I’ll discuss this
below, along with other ideas for design
improvements.

PatientSessionBean
At the heart of the system is the

PatientSessionBean, a session bean that
contains patient information and busi-
ness logic. The bean is deployed as a
stateful session bean to allow a client to
access it multiple times without losing
state between requests. Code for the
enterprise bean component is given in
Listings 1, 2 and 3 (remote interface,
home interface and session bean,
respectively).

An interesting feature of a stateful ses-
sion bean is its ability to be passivated
and activated by its container for memo-
ry and performance reasons. After a peri-
od of time has passed between client
calls, the EJB container will store all non-
transient, serializable attributes of the
PatientSessionBean in some form of tem-
porary persistent storage. This is usually
just a file, but could be more robust
depending on the container implemen-
tation. The next time the client calls theFIGURE 1 e-Patient use case diagram

65FEBRUARY 2000

Java COM

Software Ag
www.softwareag.com

E J B H O M E

Java COM

66 FEBRUARY 2000

bean, the EJB container will allocate
memory for the enterprise bean and ser-
vice the request, a process called activa-
tion. Since the bean instance has been
stored, a handle is used to return the
bean to the active instance pool. EJB
Handle objects are found through the
EJBObject interface method getHandle().

Storing Handle objects can be done
either persistently through serialization
or you can just hold onto them in memo-
ry, as seen in Listing 4 of the Patient-
TrackSessionServlet.

While a session bean isn’t meant to
live beyond a hardware or software fail-
ure, passivation does provide a pseudo-
persistent environment that allows EJB
servers to handle higher volumes of
users in a stateful server architecture.

User Interface
The entry point into e-Patient for the

nurse actor in Enter Patient Info is the
Patient Information Form, a static
HTML form for entering information
about the patient. When submitted,
however, a Java servlet, as indicated in
the tag, processes it:

<form method=POST action="http://ver-

getg1:7001/PatientTrackSession-

Servlet">

The tag is hard-coded to access my
machine, probably not the best idea for
a production application, but feel free to
download the source code from www.-
JavaDevelopersJournal.com and modify
it to suit your needs.

Once our Web server receives the
HTTP request for submission, the
PatientTrackSessionServlet processes it
by parsing the form parameters and
potentially modifying or creating a new
PatientSessionBean. PatientTrackSes-
sion.java is not listed in full here.

The PatientTrackSessionServlet (see
Listing 4) is multithreaded (e.g., a single-
ton servlet) and uses a hashtable to han-
dle synchronization issues when multi-
ple clients access it concurrently. It uses
the hashtable patientCache to hold
instances of javax.ejb.Handle, repre-
senting currently tracked PatientSes-
sionBeans (active or passivated).

Implementing the Enter Patient Info
Use Case

When a nurse or doctor submits the
patient information to the system, the
PatientTrackSessionServlet takes the
patient information from the HttpRe-
quest object, then checks to see if the
patient is already entered into the sys-
tem by checking the patientCache for a
valid Handle object. If the patient isn’t in
the system, a new patient is created with
the submitted information, and else use
case, Diagnose Patient, is executed (see
Listing 4).

FIGURE 2 Patient HTML form

package PatientTrackSession;

import java.rmi.RemoteException;
import java.util.Vector;
import javax.ejb.EJBObject;

/**
* Patient is the remote interface representing a stateful
* session bean, PatientSessionBean.
*/

public interface Patient extends EJBObject
{

public String getDoctor() throws RemoteException;
public boolean isDoctor(String aDoctor) throws RemoteException;

public void setName(String aName) throws RemoteException;
public String getName() throws RemoteException;

public void setDOBirth(String aDOB) throws RemoteException;
public String getDOBirth() throws RemoteException;

public void setGender(String aGender) throws RemoteException;
public String getGender() throws RemoteException;

public void setAllergies(Vector aAllergies) throws RemoteException;
public Vector getAllergies() throws RemoteException;

public void setLastVisitDate(String aLVD) throws RemoteException;
public String getLastVisitDate() throws RemoteException;

public void setDiagnosis(String aDiagnosis) throws RemoteException;
public String getDiagnosis() throws RemoteException;

}

package PatientTrackSession;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface PatientHome extends EJBHome

{
public Patient create(String aDoctorName) throws Create
Exception, RemoteException;

}

package PatientTrackSession;

import javax.ejb.SessionBean;
import java.util.Vector;
import java.rmi.RemoteException;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;

public class PatientSessionBean implements SessionBean
{

// Business Attributes
private String doctor;
private String name;
private String DOBirth;
private String gender;
private Vector allergies;
private String lastVisitDate;
private String diagnosis;

// Business Methods
public String getDoctor() {

return doctor;
}

public boolean isDoctor(String aDoctor) {
if (aDoctor == null)

return false;

String curDoctor = this.getDoctor();
return curDoctor.equalsIgnoreCase(aDoctor);

}

public void setName(String aName) {
name = aName;

}
public String getName(){

return name;
}

Listing 3: PatientSessionBean - session bean

Listing 2: PatientHome - home interface

Listing 1: Patient.java - remote interface

67FEBRUARY 2000

Java COM

ComputerJobs.com
www.computerjobs.com

Java COM

68 FEBRUARY 2000

Implementing the Diagnose Patient
Use Case

In this use case the patient’s doctor is
validated and the diagnosis is updated.
Currently, only the patient’s doctor has
access to the patient’s records. When the
patient information is submitted and
the patient currently exists, the Handle
object referring to the PatientSession-
Bean is used to get a proxy to the session
bean.

patient = (Patient)handle.getEJBOb-

ject(); // get EJBObject from handle

If the session bean had been passivat-
ed during this time, the container would
activate it and return a proxy (EJBOb-
ject) of the component. Considering
that a valid EJBObject is returned, the
diagnosis is updated accordingly when
the Web page is submitted.

The stateful session bean solution
solves our business requirement of
allowing a doctor to enter an initial diag-
nosis, then return to the patient record
to update it once more information is
known. The technical implementation
of e-Patient is adequate to show some
nice features of EJB such as Handles and
stateful session beans. There is room for

improvement, however. Let’s look at
some enhancements that could be
made to this e-business solution.

Feature Enhancements
Our e-business solution for patient

care has a number of areas in its busi-
ness requirements and technical solu-
tion that could be improved. Patient
confidentiality and data security are
important in health care, so business
requirements restricting access to
patient records should be better
defined. A login process should be
implemented to prevent unauthorized
users from accessing the system. Like-
wise, EJB’s support of Access Control
Lists (ACLs) could be used to restrict
access in a role-based manner. For
instance, nurses may have the ability to
enter patient information but not make
a diagnosis.

Also, stateful session beans are per-
haps not the best solution for keeping
patient records. They should be stored
instead in a database to prevent loss of
data in the event of a system failure.

Last, servlets are important in a Web-
enabled Java application, but JavaServer
Pages (JSPs) are increasingly taking
precedence over servlet development.

JSPs improve productivity by allowing
HTML developers to script the user inter-
face of the application while Java devel-
opers plug in Java code where needed.
Migrating the servlets in our solution to
JSPs would be an evolutionary move
toward future productivity gains.

I’ll expand this solution in a future
article to include some of the new fea-
tures discussed and cover more interest-
ing areas of EJB in the process.

Conclusion
This month we explored the topic of e-

business with Enterprise JavaBeans. We
covered EJB Handles, accessing enter-
prise beans from a servlet and the possi-
bility of designing stateful server archi-
tectures based on stateful session beans.

The Java platform provides a founda-
tion to build complex Web solutions.
When core business processes become
e-business enabled, employees perform
their jobs more efficiently, bringing
value to other employees, suppliers and
customers alike. For example, the added
value that an e-business solution brings
could be the difference between life and
death!

public void setDOBirth(String aDOB) {
DOBirth = aDOB;

}
public String getDOBirth() {

return DOBirth;
}

public void setGender(String aGender) {
gender = aGender;

}

public String getGender(){
return gender;

}

public void setAllergies(Vector
aAllergies) {

allergies = aAllergies;
}
public Vector getAllergies() {

return allergies;
}

public void setLastVisitDate(String
aLVD) {

lastVisitDate = aLVD;
}
public String getLastVisitDate() {

return lastVisitDate;
}

public void setDiagnosis(String
aDiagnosis) {

diagnosis = aDiagnosis;
}
public String getDiagnosis() {

return diagnosis;
}

// These method(s) satisfy the Ses-
// sionBean interface contract
private transient SessionContext ctx;

public void ejbCreate(String aDoctor)

throws CreateException, Remote-
Exception

{
doctor = aDoctor;

}

public void setSessionContext(Ses-
sionContext aCtx) {

ctx = aCtx;
}

public void ejbActivate() {
System.out.println("ejbActivat-
ing..."+doctor);

}

public void ejbPassivate() {
System.out.println("ejbPassi-
vate..."+doctor);

}

public void ejbRemove() {
System.out.println("ejbRe-
move..."+doctor);

}
}

// get parameters from HttpRequest above…

// check to see if servlet has handle
// to the patient yet

handle = (Handle)patient
Cache.get(name);
if (handle == null) {

patient = newPatient(name,
doctor, gender, dateOfBirth,
dateOfLastVisit, allergies,
diagnosis);

// add patient's handle to cache
patientCache.put(name,
patient.getHandle());

}

else {
// if patient already
// exists in servlet
// cache, get his/her
// latest diagnosis from
// the doctor.

System.out.println("Patient: "+name+"
handle found on cache.");

patient = (Patient)handle-
.getEJBObject(); // get
EJBObject from handle

if (patient != null) {
// only same doctor
// can make diagnosis
if

(patient.isDoctor(doctor)) {
patient.setDiagno-
sis(diagnosis);

}
else {

out.println("You
are not authorized
to modify Patient
"+name);
out.flush();
out.close();
return;

}

}
else {

System.out.println("no
EJBObject for handle");

out.println("ERROR:
Could not find patient!");

out.flush();
out.close();
return;

}
}

Listing 4: PatientTrackSessionServlet.java Detail

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in Enterprise

JavaBeans solutions. jwestra@verge-tg.com

E J B H O M E

69FEBRUARY 2000

Java COM

Fiorono
www.fiorano.com

Java COM

70 FEBRUARY 2000

J D J F E A T U R E

Struggling with AudioClip
If you’ve ever used the applet’s AudioClip class, you’ve probably grieved

over its limited functionality. The most irritating restrictions are its inabil-
ity to determine the length of an audio file or how much of a file has
already played. To be fair, AudioClip was designed for no-frills playback of
AU digital audio content. Consequently, it can’t play most digital audio
files, or any digital video content or Musical Instrument Digital Interface
(MIDI) files (see Listing 1).

JMF to the Rescue
Unlike AudioClip, JMF is a strategic API that’s part of Sun’s Media and

Communications APIs. It supports most popular digital audio and video
file formats along with MIDI files. Furthermore, you can use JMF 2.x to
record (or capture) both digital audio and video files.

There are two types of JMF releases: pure and performance packs. The
pure version can run on any Java platform (i.e., Linux and other forms of
UNIX), while the performance packs contain code to maximize perfor-
mance for either Win32 or Solaris platforms.

The multimedia objects in Sun’s Java Develop-

ment Kits are so primitive that they’re worthless

for serious development. Fortunately, Sun has

overhauled Java’s multimedia capabilities with

the release of the Java Media Framework. In this

article I’ll explain why the JMF architecture is a

significant improvement and show you how to

use these objects in your applets or applications.

Part 1 of 3

WRITTEN BY LINDEN DECARMO

71FEBRUARY 2000

Java COM

Pramati
www.pramati.om

Understanding JMF Requires Time
Besides supporting a greater number of media formats, JMF also

offers a richer selection of multimedia objects. Foremost among these
improvements is the ability to manipulate time. In fact, virtually every-
thing in JMF revolves around the clock interface and its ability to moni-
tor time.

JMF clocks measure two types of time: TimeBases and Media Time.
The former represents the constant flow of time from a known starting
point (Greenwich Mean Time is a TimeBase). By contrast, Media Time
describes the amount of time that has been consumed in a media
stream. Unlike a TimeBase, Media Time can be stopped, can flow back-
ward (rewind) or can advance at irregular intervals (fast forward).

Clocks use state to determine when they should be active. By
default, clocks begin in stopped state and you start them by invoking
their syncstart() method. Once started, a clock attempts to synchronize
(or correlate) its TimeBase with its Media Time. Clocks remain started
until you issue a stop(), the media stream ends or an exception occurs
(see Figure 1).

Getting Everything Under Control
Although time is an important aspect of multimedia, a robust multi-

media platform provides additional features such as resource manage-
ment, error handling and support for threads. JMF supports these fea-
tures in the controller interface, an extension of the clock interface.

Controllers enhance the clock interface by dividing the stopped state
into five stages: unrealized, realizing, realized, prefetching and
prefetched (see Figure 2).

Controllers leave the unrealized state and enter the realizing state
when they attempt to access the resources necessary to manipulate mul-
timedia content. For instance, an audio controller will attempt to reserve
resources on a sound card during realization. Once these resources are
obtained, the controller becomes realized.

If you’re using a nonrealtime operating system such as Windows 98,
NT or Solaris, your programs may run irregularly. By contrast, multime-
dia devices consume large quantities of data at specific intervals. If your
application can’t obtain enough time slices to fulfill the demands of
these devices, you’ll hear the grating sound of audio breakups or see
video frames being dropped.

The most common technique to prevent such problems is to pool
buffers before they’re needed. If your application can’t satisfy the
device’s buffer demands, you can withdraw data from the previously
filled buffer pool and stream it to the device, thereby preventing audio-
visual hiccups.

The process of filling a controller’s buffer pool is called prefetching. A
controller leaves realized state and enters prefetching state when you
request that it prefetch buffers (the numbers of buffers required will vary
by controller). After these buffers have been obtained, the controller
reaches the prefetch state. Once prefetched, a controller may be started.

The controller’s subdivision of stopped state gives you increased gran-
ularity of control over multimedia resources. For instance, if a controller
is able to realize, you know that all required hardware resources are func-
tioning and available for use.

Another advantage of the multistate approach is the ability to detect
errors. For instance, if the controller implodes while it’s realizing, you
know that it failed trying to acquire or initialize a multimedia resource.
By contrast, if it failed to prefetch, the problem involved filling the
prefetch buffers. Similarly, if it fails to start, it’s probably due to an invalid
media time or clock operation.

The final benefit of multiple states is the ability to maximize threads.
For example, state transitions that occur rapidly (i.e., stopped to realiz-
ing and realized to prefetching) are done synchronously, while the tran-
sitions that can take extended periods of time (i.e., realizing to realized
and prefetching to prefetched) are performed asynchronously. Realizing
must be threaded since some hardware devices have long initialization
times. Likewise, prefetching is threaded because input/output opera-
tions are often lengthy.

Never Assume
Controllers provide four primary methods to manipulate states: real-

ize(), prefetch(), start() and stop(). The first method causes the controller
to transition from unrealized to realizing and then to realized state. Sim-
ilarly, prefetch() switches it from realized to prefetching and then to
prefetched. The last two methods, start() and stop(), cause the controller
to move into started and stopped state, respectively (see Table 1).

Because state transitions may occur asynchronously, you should
never assume that the transition has completed when the controller’s
prefetch() or realize() methods return to your application. Rather, you
should listen for the appropriate state transition event to be sent from
the controller. Failure to listen for these events could result in an excep-
tion if you call an inappropriate method for a given state.

To receive controller events, you should register as a listener of the
controller. Since controller events utilize the JDK 1.1 event model, if
you’re familiar with JavaBeans or AWT programming, you already know
how to handle them.

// Add ourselves as a listener to the controller

player.addControllerListener(this);

Events permit you to monitor the state of a controller. Although most
of the code in your listener method will be handling state transition
events (see Listing 2), you should also listen for errors, media status
events or error conditions. For instance, a well-written JMF application
listens for the EndOfMediaEvent so that it’s aware when playback stops:

TABLE 1 Controllers communicate state transitions with events

realize() RealizeCompleteEvent Realized

prefetch() PrefetchCompleteEvent Prefetched

start() StartEvent Started

stop() StopEvent Varies

Controller Method Controller Event New State

0 15 15 20 20 800

Start Stop Start

Media Time

TimeBase Time

Stop Start Stop

0 15 20 25 40 800

FIGURE 1 This TimeBase flows continually at 0.800 ms and isn’t
interruptible. The Media Time stops and restarts as the user
pauses the stream.

Controller Stopped state

U
nr

ea
liz

ed

R
ea

liz
in

g

R
ea

liz
ed

Pr
ef

et
ch

in
g

Pr
ef

et
ch

ed

S
ta

rt
ed

S
ta

te

FIGURE 2 The controller divides the Clock’s stopped state into five
substates.

Java COM

72 FEBRUARY 2000

73FEBRUARY 2000

Java COM

IAM
p/u

Java COM

74 FEBRUARY 2000

// the EndOfMediaEvent indicates we've run out of data

else if (event instanceof EndOfMediaEvent)

{

// rewind (i.e. set media time to 0

player.setMediaTime(new Time(0));

}

The Good Stuff
So far, we’ve concentrated on primitive objects and interfaces. Now

we’ll delve into the three components that let you play content: Data-
Source, Player and Manager.

DataSources are objects that retrieve data, place it in buffers and
stream these buffers to client applications. Their main responsibility is
to convert dedicated audio and video file formats into industry standard
formats such as Pulse Code Modulation (PCM). This conversion process
ensures that client applications can work with virtually any file format.

There are two types of DataSources: pull and push. PullDataSources
supply buffers when your application requests them. Examples include
those that read .AVI, .WAV and MIDI files. By contrast, PushDataSources
stream data to your application when the data is available. TV and radio
broadcasts are examples of PushDataSources since the content is con-
tinually being pushed toward you. They are more complex to use since
you must handle situations in which a buffer arrives and you’re busy
doing something else.

MediaHandlers retrieve buffers from a DataSource, massage the data
and transport the resultant buffers to a multimedia device. The most
common type of MediaHandler is the Player, a MediaHandler that also
implements the controller interface. When you request that a Player
start(), it obtains data from its associated DataSource, updates its state
information and sends the data to its destination device.

Managing the Missing Piece
If you simply want to play an audio file, the multitude of methods sur-

faced by DataSource and Player objects is intimidating. Furthermore, it can
be a daunting task to find a MediaHandler to process a DataSource’s out-
put. Therefore, JMF provides the Manager object to shield you from these
implementation details. The Manager not only finds the appropriate Data-
Source for your content, but it also constructs a Player, connects the Player
to the DataSource and returns a Player reference to your application.

The only prerequisite for using the Manager is that you must pass it a
MediaLocator (see Listing 3). MediaLocators inform the Manager of the
data’s location and the protocol that should be used to retrieve the data.

Once you’ve created a MediaLocator, you can call the Manager’s cre-
atePlayer() method to construct a Player.

// create a Player with a Media Locator

player = Manager.createPlayer(mrl);

The first thing you should do upon successful creation of a Player is to
add yourself as a listener. If you delay this call, you may miss vital warn-
ing events emanating from the Player.

Another technique you should practice is enclosing the initial interac-
tion with the Player in try/catch blocks.

try

{

// create a Player based on the medialocator

player = Manager.createPlayer(mrl);

// be sure to immediately listen for events...

player.addControllerListener(this);

}

import java.applet.AudioClip;

public class LessPrimitive extends
java.applet.Applet
{

AudioClip audioClip1;
AudioClip audioClip2;

// Applet role
public void init()
{

// create two audio objects

audioClip1 = getAudioClip(get-
CodeBase(), "clock1.au");
audioClip2 = getAudioClip(get-
CodeBase(), "clock2.au");

// play two audio files in loop mode

audioClip1.loop();
audioClip2.loop();

try
{

// we still have NO clue how
// long these files will take if
// we want to play them one time
// however, we put them in loop
// mode, so they will play forever
Thread.sleep((long) 2000);

}
catch (InterruptedException e)
{

System.out.println("Someone
woke us up unexpectedly...");

}

// stop the first clip after 2
// seconds

audioClip1.stop();

try
{

// we still have NO clue how
// long these files will take if
// we want to play them one time
// however, we put them in loop
// mode, so they will play forever
Thread.sleep((long) 7000);

}
catch (InterruptedException e)
{

System.out.println("Someone
woke us up unexpectedly...");

}

// stop the 2nd after another 7
// seconds

audioClip2.stop();

}

}

public synchronized void controllerUp-
date(ControllerEvent event)
{
// this event is received when the
// Controller enters Realized state
if (event instanceof RealizeCom-
pleteEvent)
{

// event handling code goes
// here.....

}
// this event is received when the
// Controller finishes prefetching....

else if (event instanceof Prefetch-
CompleteEvent)

{
// event handling code goes
// here.....

}

}

MediaLocator mrl = null;
URL url = null;

// The applet tag should contain the
// path to the source media file, rela-
// tive to the html page.

if ((mediaFile = getParameter("FILE"))
== null)
{

System.out.println("Invalid
media.....");

}
try
{

// create a MediaLocator based on
// the filename
url = new URL(getDocumentBase(),
mediaFile);
mediaFile = url.toExternalForm();

}
catch (MalformedURLException mue)
{

System.out.println("Bad URL......");
}
try
{

// Create a media locator from URL
if ((mrl = new MediaLocator(media-
File)) == null)
{
System.out.println("Can't build URL
for " + mediaFile);

}

Listing 3

Listing 2

Listing 1

75FEBRUARY 2000

Java COM

InetSoft
www.inetsoftcorp.com

Java COM

76 FEBRUARY 2000

catch (NoPlayerException e)

{

System.out.println("Can't find a player for " + mrl);

}

This is crucial because JMF Players can throw a multitude of excep-
tions during object creation.

New JMF programmers remember to create the Player inside a try/catch
block, but frequently use methods that depend on player creation outside
the block. For instance, should the Player creation in Listing 4 fail, the fail-
ure will be caught. However, the code then attempts to add itself as a lis-
tener to a nonexistent Player, which will result in an unhandled exception.

You Choose the Level of Complexity
The beauty of JMF is that casual programmers can use the Manager to

create a Player, then issue the start() method to immediately begin play-
back of multimedia content. The following code illustrates the quickest
technique to commence playback. It isn’t necessary to understand all of
the state gyrations a controller goes through, but you should listen for
error events and catch exceptions.

public void start()

{

// when the Web page is loaded, immediately start playback

if (player != null)

{

player.start();

}

}

JMF also satisfies the cravings of advanced programmers for low-level
access to multimedia objects. For instance, an advanced application

may test for the existence of multimedia resources. If resources are avail-
able, it will then prefetch buffers to improve responsiveness. Finally, it
will automatically restart playback when the media stream finishes. All
of these actions are possible if you listen and react to controller events.

To implement such a system, the applet in Listing 5 calls the Player’s
realize() method when the applet’s init() method is invoked. If it receives
a RealizeCompleteEvent, it knows that the audio hardware is functional.
Consequently, it issues prefetch() to fill up the Player’s buffers.

When the PrefetchCompleteEvent is sent by the Player, the applet displays
a set of buttons to start and stop playback. Since prefetch() has filled the Play-
er’s buffers, this applet will start playback faster than one written by a casual
programmer who calls start() while the Player is in the unrealized state.

Finally, when the Player runs out of media to process, it will fire the End-
OfMediaEvent to the applet. The applet in turn rewinds the file to the
beginning and restarts playback by calling start(). This will cause the media
to repeat forever until the user hits the stop or pause buttons on the applet.

Is There More?
As we’ve discovered, JMF provides the multimedia building blocks for use

in your applets and applications. The clock interface permits you to control
the direction and speed of playback. The controller extends the clock to pro-
vide resource management, error handling and event tracking. DataSources
and Players retrieve and process, respectively, multimedia data. Finally, the
Manager object simplifies the usage of DataSources and Players.

In the next part of this series we’ll explore how you can energize your
JMF applications with emerging Internet multimedia standards.

AUTHOR BIO
Linden deCarmo is the author of Prentice Hall’s Core Java Media Framework. He is a senior software
engineer at NetSpeak Corporation, where he develops advanced telephony software for IP networks.

catch (MalformedURLException mue)
{

System.out.println("Invalid media
file URL!");
System.exit(0);

}

try
{

// create a Player based on the
// medialocator
player = Manager.createPlayer(mrl);

}
catch (NoPlayerException e)
{

// exceptions will be caught
// here...
System.out.println("Can't find a
player for " + mrl);

}

// if an exception occurred in Manag-
// er.createPlayer(mrl)
// then the player reference will be
// NULL and the line below will gener-
// ate another exception
player.addControllerListener(this);

// this applet will load the audio
// file specified by the HTML page and
// play it forever until stop or pause
// is pressed

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.net.URL;
import java.io.IOException;

import java.util.Properties;
import javax.media.*;
import java.lang.String;
import java.net.MalformedURLException;

public class AlohaJMF extends Applet
implements ControllerListener
{

// this is the object that will
// play the media files..
Player player = null;

// displays progress during download
Component progressBar = null;

// video window
Component visualComponent = null;

// GUI controls for position,
// start, stop etc.
Component controlComponent = null;

int controlPanelHeight = 0;
Panel panel = null;

// attributes of the video window....
int videoHeight = 0;
int videoWidth = 0;

// init reads the HTML params and
// creates a Player based on those
// parameters......
public void init()
{
setLayout(null);

// create the panel where we'll
// show our Player

panel = new Panel();
panel.setLayout(null);
add(panel);
panel.setBounds(0, 0, 320, 240);

// HTML page will tell us what to
// play...
String mediaFile = null;

MediaLocator mrl = null;
URL url = null;

// Get the file to play from HTML...

if ((mediaFile =
getParameter("FILE")) == null)

System.out.println("HTML page
contains bogus file.");

try
{

// create a MediaLocator based
// on the filename
url = new URL(getDocument-
Base(), mediaFile);
mediaFile = url.toExternal-
Form();

}
catch (MalformedURLException mue)
{

System.out.println("Invalid URL");
}

try
{

// Create a media locator from URL
if ((mrl = new MediaLocator-
(mediaFile)) == null)
{

System.out.println("URL er-
ror for:" + mediaFile);

}

Listing 5

Listing 4

lindend@ibm.net

Java COM

Building the
NEW ENTERPRISE

SPONSORED BY: PRODUCED BY:

Benefit by Attending
■ The tips and techniques you’ll

learn will help you do your job
better.

■ Discover new applications being
developed today that you will
need tomorrow.

■ Sessions are designed for users
at all levels with special sessions
just for gurus.

■ Network with fellow software
developers as well as recog-
nized Java experts.

■ You’ll learn how Java is being
used for large-scale enterprise
applications.

Two-Day Exhibit
A full-scale exhibit hall packed with
leading vendors will be on hand to
demonstrate the latest products and
answer your questions. All are
welcome to fun-filled networking
opportunities.
EXHIBIT HOURS
Monday, September 25, noon – 7:30 p.m.
Tuesday, September 26, noon – 5:30 p.m.

Take A Look at What You’ll Learn:
■ Building Mission-Critical

Applications with Java
■ Advanced JFC/SWING

Component Integration
■ Real-Time Java
■ Designing High Performance

e-Commerce Systems with EJB
■ Combining XML and Java
■ Java 2 Enterprise Edition
■ Java Advanced Programming
■ Java Security
■ Java Runtime Internals
■ Building a Multithreaded Server

in Java
■ Methods for Effective Java Unit Testing
■ Developing COM and MTS

Components in Java
■ Developing Multitier Applications

Using the Servlet API
■ Object-Oriented Analysis and

Design with Java
■ Dynamic Bytecode Generation

with Java
■ JDBC Technology

■ Developing Large-Scale
Applications with Java and CORBA

■ 2D and 3D Graphics in Java
■ Designing Java Business

Applications
■ Java and Legacy Systems
■ Using the Java Naming and

Directory Interface API
■ Java Gaming
■ Programming for Devices (J2EE)
■ Programming for the Desktop

(J2SE)
■ Java Commerce
■ Using Java Agents
■ Jini and JavaSpaces
■ Java Testing and Debugging
■ Java Exception Handling
■ Garbage Collection Techniques
■ Using Java with UML
■ Writing Consumer Applications

Using Personal Java API
■ Smart Card Application

Development
■ Database Integration with Java

Are You a Java Guru?
Why Not Join Our Faculty?
If you’re anxious to share your unique Java
experience, please send an e-mail to
stewart@camelot-com.com for details
on how you may join the faculty. Topics of
interest include but are not restricted to:
■ Java in the Enterprise
■ Embedded Java
■ Java Success Stories/Real World Java
■ Advanced Java Application

Development
■ XML & Java
■ Java in the Industry/Java

Business Applications
■ Server-Side Java
■ Java Testing and Debugging
■ Object-Oriented Concepts and

Design with Java
■ Java and Open Source
■ Component Software and Frameworks

CALL FOR PAPERS
Deadline: April 17, 2000
Acceptance: May 15, 2000

Join 100% Java Developers
Over 2,500 of your peers will be at JavaCon 2000, along

with the industry’s most respected technical experts,

sought-after gurus and advanced users who will show you

how to maximize Java for the enterprise. Make 2000 your

year! Dedicate yourself to 4 days of Java intellect and

master new skills from those who are defining Java’s future.

Java Developer’s Journal
Puts a Twist on Today’s Hottest Topics

JavaCon 2000 is
your only opportunity
to learn from the
experts at Java
Developer’s Journal
– who best combine
technical expertise
and practical vendor
know-how.

W W W . J A V A C O N 2 0 0 0 . C O M

CONFERENCE September 24-27, 2000

EXHIBITIONSeptember 25-26, 2000

SANTA CLARA
CONVENTION CENTERSanta Clara, California

Java Developer’s Journal Announces...

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. SYS-CON Publications, Inc., Java Developer’s Journal and Camelot Communications are independent of Sun Microsystems.

JavaCon2000
www.javacon2000.com

Java COM

78 FEBRUARY 2000

79FEBRUARY 2000

Java COM

else
{

try
{

// setup Player for media
player = Manager.cre-
atePlayer(mrl);
// listen for events imme-
// diately....
player.addController-
Listener(this);
}
catch (NoPlayerException e)
{

System.out.println-
("Player creation
failed for " + mrl);
System.exit(0);

}
}

}
catch (MalformedURLException mue)
{

System.out.println("Invalid
media file URL!");
System.exit(0);

}
catch (IOException ioe)
{

System.out.println("IO excep-
tion creating player for " + mrl);
System.exit(0);

}

}

// this method is called on applet
// creation and also when the page
// is reloaded

public void start()
{

// automatically begin playback
// when the page is loaded....

if (player != null)
{

player.start();
}
}

// make sure to stop AND close all
// resources when stop is called..
// otherwise, we'll have resource
// leaks and frustrated users...
public void stop()
{

if (player != null)
{

player.stop();
player.deallocate();

}
}

public void destroy()
{
player.close();
}

// controllerUpdate is required to
// listen for JMF events

public synchronized void con-
trollerUpdate(ControllerEvent event)
{
// Has our Player dead?
// If so, nothing to do..event is
// bogus.
if (player == null)

return;

// When the player is Realized,
// get the visual and control com-
// ponents and add them to the
// Applet
if (event instanceof RealizeCom-

pleteEvent)
{

if (progressBar != null)
{

panel.remove(progressBar);
progressBar = null;

}

int width = 320;
int height = 0;
if (controlComponent == null)

if ((controlComponent =
player.getControl-
PanelComponent())
!= null)

{

controlPanelHeight =
controlComponent.get-
PreferredSize().height;
panel.add(controlCom-
ponent);
height += control-
PanelHeight;
}

if (visualComponent == null)
if ((visualComponent

= player.getVisual-
Component())!= null)

{
panel.add(visual-
Component);
Dimension video
Size = visual
Component.getPre-
ferredSize();
videoWidth =
videoSize.width;
videoHeight =
videoSize.height;
width = video-
Width;
height += video
Height;

visualComponent.setBounds(0, 0, vide-
oWidth, videoHeight);

}

panel.setBounds(0, 0, width,
height);
if (controlComponent != null)
{

controlComponent.set-
Bounds(0, videoHeight,
width, controlPanel
Height);
controlCompo-
nent.invalidate();

}

}

// the EndOfMediaEvent == no
// more data

else if (event instanceof EndOfMe-
diaEvent)
{

// jump to beginning of content
player.setMediaTime(new
Time(0));
// immediately restart playback...
player.start();

}
else if (event instanceof Con-
trollerClosedEvent)

{
// player is done, kill
// GUI elements

panel.removeAll();
}
}

}

Meet JDJ
EDITORS AND COLUMNISTS
Attend the biggest Java developer event
of the year and also get a chance to meet
JDJ's editors and columnists

Sean Rhody JDJ Editor-in-Chief
Sean is the editor-in-chief of Java

Developer’s Journal. He is also a princi-
pal consultant with Computer Sciences

Corporation where he specilaizes in
application architecture – particularly

distributed systems.

Alan Williamson
Straight Talking Columnist

Alan is the CEO of n-ary (consulting)
Ltd, the first pure Java company in the
United Kingdom. The firm, which spe-

cializes solely in Java at the server side,
has offices in Scotland, England and

Australia. Alan is the author of two Java
servlet books and contributed to the

Servlet API. He has a Web site at
www.n-ary.com.

Ajit Sagar e-Java Columnist
Ajit is a member of the technical
staff at i2Technologies in Dallas,

Texas, where he focuses on
Web-based e-commerce applications

and architectures. A Sun-certified
Java programmer with nine years of
programming experience, including

three in Java, Ajit holds an MS in
computer science and a BS in

electrical engineering.

Jason Wesra
EJB Home Columnist

Managing partner with Verge
Technologies Group, Inc., a Java

consulting firm specializing in
Enterprise JavaBeans solutions.

MEETING
September 24-27, 2000

Santa Clara Convention Center
Santa Clara, CA

Java COM

80 FEBRUARY 2000

B
ack before Java became popular, I was a C++ bigot. I
programmed in nothing but C++. I lived, ate and
breathed C++. If it wasn’t C++, it was rubbish. I thought
C++ was the alpha and omega of object-oriented pro-
gramming. I had “operator overloading” for breakfast,
“templates” for lunch and “multiple inheritance” for
dinner, and I always went back for seconds.

Then a funny thing happened. I got a new job at another company as
a C++ programmer. But they pulled the old bait and switch. Once I start-
ed working, someone suggested writing a good portion of a large project
in a scripting language. I protested – I would not condescend to program
in any other language but C++.

Shortly after I started at this new company the following edict was put
forth: “Thou shall use a scripting language.” Thus I was forced by man-
agement to write a good portion of the project in a high-level scripting
language. They told us to glue components written in C++ together with
this scripting language (in addition to writing components in C++). At
first I hated it, as any self-respecting C++ bigot would. Then, gradually,
the productivity of my team – and me – skyrocketed.

I became a true believer in scripting languages. The more I saw pro-
ductivity climb, the less I coded in C++ and the more I coded in the
scripting language. Granted, the scripting language had some limita-
tions, but for many tasks it was just what the doctor ordered. Have you
had a similar experience with a scripting language? If not, perhaps you
should.

Scripting Languages
Many scripting languages are either object-oriented or object-based.

Almost all of them are interpreted and use late-bound polymorphism.
This makes scripting languages extremely dynamic and easy to program,
which is essential for rapid application development (RAD), gluing com-
ponents together and prototyping projects.

There’s a fine line between a scripting language and a programming
language. For example, Smalltalk is an extremely dynamic interpreted
language, yet I dare you to call it a scripting language to a Smalltalk evan-
gelist – you’ll probably get punched in the nose. When I refer to scripting
languages, I’m referring essentially to languages that are mostly inter-
preted and extremely dynamic, that is, they employ late-bound poly-
morphism and dynamic typing.

Java for the most part is a glorified scripting language – granted, a
scripting language on steroids. Unlike most such languages, however,
Java uses statically typed polymorphism; thus it has been called a hybrid
language. At first this may seem like a disadvantage, but as it turns out,
statically typed polymorphism is great for systems programming, frame-
work definition and component development. Java’s design by interface
is truly great for large systems and frameworks.

Calling Java a system programming language to a system programmer
is likely to evoke a nasty response (similar to calling Smalltalk a scripting
language to a Smalltalk evangelist). However, don’t view Java as a system
programming language in the classic sense. Instead, view it as a virtual
system programming language for a virtual system, that is, a virtual
machine: the Java Virtual Machine (JVM). And Java, like its scripting lan-
guage cousins, can be very dynamic – not as dynamic as Python,
Smalltalk, and their ilk, but more dynamic than C++.

The funny thing is that the parts of Java that make it a great system
language are the same parts that make it a mediocre scripting language.
Don’t get me wrong. Java is a great language. I jumped on the Java band-
wagon as soon as I could hop a ride, and it’s been good to me. However,
Java is not as easy to use as scripting languages are. You really need a glue
language in your toolkit. Build components and frameworks with Java,
but glue the frameworks with a scripting language.

Don’t fret! There’s a history of using high-level scripting languages
with system languages. Thus it’s no surprise that there are scripting lan-
guages for Java. (Note: Don’t get hung up on the term scripting; you can
replace it with programming.)

J D J F E A T U R E

WRITTEN BY RICK HIGHTOWER

Programming Languages
for the JVM

Programming Languages
for the JVM

81FEBRUARY 2000

Java COM

Embar
cadero

www.

embarcadero.

com

Scripting Languages and System Languages:A Marriage Made in Heaven
For example, on UNIX systems many programmers program in C and

C++, then glue modules together using higher-level shell programming
(KornShell, C Shell, Bourne Shell, etc. Thus C is the system language and
the shell scripts are the glue.

Another example: C and C++ programmers on UNIX often use Tcl (a
scripting language) to do their GUI programming and glue together classes
and libraries written in C++. C++ is the systems language and Tcl is the glue.

At other times C and C++ programmers will use Python as a control
language – Python often ships with the UNIX system preinstalled.
Python is easy to extend with a C. Again, C is the system programming
language, Python is the glue.

The most prevalent example of an object-based scripting language is
Visual Basic, which is often used to glue together COM components
written in a variety of languages – C++, Delphi, and so on. Thus C++ is
the systems language and Visual Basic is the glue.

Scripting Equals Increased Productivity
For more information on scripting languages and increased productivi-

ty check out the paper “Scripting: Higher Level Programming for the 21st
Century” by John K. Ousterhout (www.scriptics.com/people/john.ouster-
hout/scripting.html). The paper basically states what I have experienced:
namely, a sharp increase in productivity by using a higher-level language.
The paper states that a scripting language is five to 10 times more produc-
tive than a strongly typed language like Java.

Scripting languages, however, don’t replace a system language; they
augment it. And five to 10 times more productive seems a little high to
me. My personal experience has been two to three times as fast, depend-
ing on the application. Your results may vary.

Many developers are accustomed to higher-level languages like
JavaScript and Visual Basic. Thus they may be more comfortable with
them when migrating to the Java (i.e., the JVM). Often, especially for pro-
totyping, a scripting language can be a more productive environment. In
addition, Java programmers are hard to find; good Java programmers are
nearly impossible to find. There’s a lot more demand than supply.

You may want to use a scripting language for the following reasons:
• To extend an application, that is, an extension language
• To debug an application
• To learn and experiment with the Java API
• To prototype a system rapidly
• To glue together subsystems and components
• To automate testing and regression testing

You can embed scripting languages into your application so that
users can extend it. You can use the dynamic interactive nature of
scripting languages to inspect objects at runtime to debug an applica-
tion.

The best way to learn the Java API is by experimenting. Working with
dynamically typed, interactive scripting languages allows you to experi-
ment quickly. Even though the Java API is documented well, it helps to
try things out interactively. I do this all the time.

The properties listed above make scripting languages ideal for proto-
typing. Once you start using an interactive, dynamic scripting language,
you won’t stop. It’s addictive and productive.

Java Was Built to Be Scripted
Java has wonderful features that make creating scripting languages

easy. The class reflection and bean introspection APIs are a great basis
for integrating these languages. Essentially, the scripting language can
get metadata about a Java’s class properties, events and methods. The
scripting language can then use this metadata to change properties,
handle events and invoke methods.

To learn more about introspection and reflection see the API docu-
mentation under java.lang.reflect.* and java.beans.Introspector. I’ve had

the pleasure of doing metaprogramming with COM, CORBA and Java.
Out of the three, I much prefer Java’s reflection and introspection mech-
anism and APIs. It’s a lot easier to use.

Scripting Languages for the Java Virtual Machine
Some may feel that the only language for the JVM is Java. They’re

wrong. Like many platforms (and Java is very much a platform), the JVM
has many languages. And the list of those that work in the JVM seems to
keep growing. Mixing Java with a scripting language for RAD is a power-
ful one-two punch that could make your next project fly.

Introduction to a Regular Column
What’s been said so far is to welcome you to a new column in Java

Developer’s Journal. This column will focus on topics like other lan-
guages for the JVM, integrating Java with mainstream scripting lan-
guages like Perl and Python, special-purpose languages (rules, etc.), cre-
ating JavaServer Pages (JSP) in JavaScript and Python, SWIG, integrating
with C libraries, and others. This will be the resting place for non-
Java–language JVM-related topics in JDJ.

The Column’s First Series
To kick off the column’s birth, I’ll start with a multipart series on pro-

gramming and scripting languages that run in the JVM. These languages
are Java-friendly, and often run in the JVM in both interpreted mode and
as compiled Java classes, that is, they can be compiled to Java bytecode.
These languages integrate well with Java classes and beans via the intro-
spection and reflection APIs. They’re great for prototyping, gluing
together Java components and rapid application development. All of the
languages are 100% Pure Java.

A lot of languages work in the JVM. Rather than just pick the ones I think
are best, I want to solicit your feedback on which ones are most important
to you. You can take part by going to the JDJ forum and voting. However,
I’ve made a short list of languages that I think you should consider.
1. JPython (Python)
2. Rhino (JavaScript-like)
3. Instant Basic (Visual Basic clone)
4. JACL (Tcl)
5. BeanShell (Java-like)
6. Bistro (Smalltalk-like)
7. Skij (Lisp/Scheme-like)

Everyone has a favorite language, and this list represents the most
mature and common languages for the JVM. Most are easy to obtain,
and quite a few are open source (GPL or GPL-like licenses). If you feel I’m
missing a major language, let me know. We love feedback here at JDJ. The
following sections give some background on each language.

Short Drill-Down of Different Languages
• Python (JPython): Java implementation of Python, a high-level,

extremely dynamic, object-oriented language. JPython is very close to
Python, and has been certified 100% Pure Java. Recently, NetBeans
(the Java IDE maker that was bought by Sun) had a poll on their Web
site regarding integrating a scripting language with their Java IDE.
JPython won by a landslide. If you’ve used it, you know why.

You can develop JSP in JPython – called PSP for Python Server Pages.
Python and JPython are open source. To learn more about JPython visit
www.jpython.org and www.python.org. To learn more about Python Serv-
er Pages, which run in a Java Servlet server, see www.ciobriefings.com/
psp/. (PSP is freely available.)

• Tcl (JACL): Java Command Language (JACL, i.e., Java Tcl) is a Java imple-
mentation of Tcl 8.x. With JACL you can write scripts for Java compo-
nents and APIs. In addition, there is Tcl blend, which allows manipula-

Java COM

82 FEBRUARY 2000

tion of Java objects directly from Tcl. Tcl is
open source. To learn more about JACL see the
Scriptics Web site at www.scriptics.com/prod-
ucts/java/. Many Tcl users have claimed sig-
nificant reduction in development costs. Tcl is
the definition of RAD.

JavaScript (Rhino): Java implementation of
JavaScript 1.5. JavaScript is a very powerful,
object-based scripting language. The name
Rhino is from the rhino on the cover of
JavaScript: The Definitive Guide by David
Flanagan (O’Reilly & Associates). The freely
available Rhino is open source and its code is
covered by the NPL (Netscape Public License).
Rhino is based on JavaScript 1.5, which is
based on ECMAScript (standard ECMA-262
ECMAScript, a general-purpose, cross-plat-
form programming language). Since many
developers have written JavaScript, Rhino is a
natural fit for doing rapid application develop-
ment and prototyping in the JVM.

• JavaScript-like languages/services that deserve
further investigation: PolyJSP, JSP for JavaScript
and WebL; Resin, another JSP for JavaScript;
and FESI, a free EcmaScript.

• Visual Basic clone (Instant Basic): Halcyon’s
Instant Basic for Java is a Java implementa-
tion of a Visual Basic clone. They’ve cloned
the IDE, database components, and so on.
This would be great if you have a lot of Visu-
al Basic programmers. This also allows you
to quickly port existing Visual Basic applica-
tions to the Java platform. In addition, Hal-
cyon has an iASP (Active Server Pages) ver-
sion of JSP in which you can develop cross-
platform Active Server Pages. JSP was Sun’s
answer to Microsoft’s ASP. iASP is an ASP
clone that works with Java; thus you can use
VBScript and JavaScripts to access all types
of components (JavaBeans, CORBA, EJB,
etc.). To learn more about Halcyon’s Visual
Basic products go to www.halcyonsoft.com.

• Java (BeanShell): BeanShell is interpreted Java.
The syntax is very much like Java, i.e., Bean-
Shell executes Java statements and expres-
sions. Like other scripting languages, Bean-
Shell is dynamically typed; thus much of Java
syntax for type declaration and casting is
optional. This is a wonderful language for writ-
ing prototypes and learning new APIs (new to
you) through experimentation. In addition,
BeanShell, as the name implies, adds extra
support for dealing with beans. I find it very
easy to use, and it’s freely available and open
source under the GPL license. To learn more
visit www.beanshell.org. (You may also want to
check out Dynamic Java, which seems similar
to BeanShell, at www.inria.fr/koala/djava/.)

• Smalltalk (Bistro): Bistro is a Smalltalk variant
with extensions for Java features and integra-
tion. It offers software developers the ability to
code in a syntax that is very readable and

expressive. Like BeanShell, Bistro is dynami-
cally typed with the option of being statically
typed for closer integration with Java. Thus you
can mix and match statically typed systems
with those that are dynamically typed. For pro-
totyping, the dynamically typed languages
make a lot more sense. Smalltalk is purely
dynamically typed. This variant has a good mix
of the Java type safeness with the Smalltalk fast
development. For more information on Bistro
see www.jps.net/nikboyd/bistro/.

• Scheme (Skij): Skij is a small Scheme inter-
preter implemented in Java. Scheme is a vari-
ant of Lisp. Skij enables rapid prototyping in
the Java environment. It has many advanced
features like macros and first-class continua-
tions. You can download a copy of Skij at
www.alphaworks.ibm.com/formula/skij.
There are at least 15 ports of Scheme to the
JVM. If Skij isn’t your favorite Java Scheme
variant, let us know what is and why.

The above-mentioned languages are just sug-
gestions. If your favorite isn’t listed or none of
them tickled your fancy, then go to Robert Tolks-
dorf’s comprehensive list of programming lan-
guages for the JVM at http://grunge.cs.tu-
berlin.de/vmlanguages.html. Over 100 lan-
guages are listed! Find one you like and tell us
convincingly why it’s the best thing since sliced
bread. We don’t want to miss the next great thing.

Convergence Dynamic to Static,
and Static to Dynamic Typing

It’s interesting to compare BeanShell and
Bistro. The former is essentially a Java variant
that has added dynamic typing with optional
static typing. The latter is a Smalltalk variant
that has added static typing with optional
dynamic typing. Java and Smalltalk are on both
ends of the typing spectrum; these variants
have crossed the chasm to provide a mix of
dynamic and static typing (see Figure 1).

BeanShell and Bistro are on the right track.
The most popular scripting language of all
time, Visual Basic, also has support for both
static and dynamic typing. Note that JPython
has yet another way to fill in this typing gap, as
we’ll see when we cover JPython in the first
article in this series.

Rosetta Stone Examples for Programming Languages
This article series will give specific examples

that demonstrate how scripting languages can
be more productive. Some are great for certain
problem domains; the series will highlight the
languages working in those domains. Other
languages are general purpose; the series will
show all of the languages working in a general-
purpose manner.

The first part in the series will cover scripting
languages in general, and will introduce JPython.
Every article (including the first) will demon-
strate several sample applications as follows:

83FEBRUARY 2000

Java COM

Embar
cadero

www.

embarcadero.

com

• A simple GUI application
• A simple statistics application
• Embedding the script into an application (if applicable)
• A threaded animation application
• A simple example parsing text

For comparison, each sample application will have a corresponding
Java implementation. Each part in the series will reimplement each sam-
ple application in the language covered in that issue. Since people come
from many different programming language backgrounds, these appli-
cations will be like a Rosetta stone for programming languages that work
in the JVM. The series will be very code-centric and hands-on.

For example, in the first article the sample applications could be
implemented in JPython and Java; in the second article, in Rhino
(JavaScript) and Java; in the third, in Instant Basic (Visual Basic clone)
and Java. And so on. The real order and number of articles will depend
on the feedback we get. You, the reader, will decide the order and impor-
tance of the language. Also, we’re asking you to evaluate the languages in
the article to pick the best ones.

Criteria for Judging the Best Languages
1. Ease of use
2. Embedability
3. Resemblance to parent language
4. Unique features
5. String parsing
6. Productivity
7. Working well with Java classes
8. Development environment/debugging

Let’s drill down on the above criteria a bit.
• Ease of use: This will cover how easy the language is to learn and use.

This could be a combination of market factors. For example, the lan-
guage is a lot like Visual Basic, and a lot of developers know Visual
Basic. Therefore it’s easy for many developers to learn. Ease of use
could also be based on the syntax of the language. For example,
Python is a really easy syntax to learn.

• Embedability: One reason many people use scripting languages is to
embed the language into a large application to make it more extensi-
ble. Examples of this in the industry are Visual Basic for Applications
(VBA) for Microsoft Excel and LotusScript for Lotus Notes. The advan-
tage of using many of these languages is that you can embed them
into your own application. In addition, you can use them to control a
large system of components and frameworks written in Java. Thus this
criterion is how easily you can embed the scripting language in your
application and how well the language integrates with Java.

• Resemblance to parent language: This section covers how closely the
language resembles the language of origin. For example, how closely
does JPython resemble Python? Rhino resemble JavaScript? Bistro
resemble Smalltalk? This is an important criterion because it can
affect how portable the code is from a legacy system (by legacy I mean
non-Java – I am a Java bigot!), and document the pitfalls for people
familiar with those languages. Also, the resemblance can affect how
fast it takes you to get up to speed in the Java variation of the language.

• Unique features: What makes this language cool? What features set
this language apart from Java or the other languages? This could be a
set of language features that gear the language to a particular problem
domain. For example, the language could have a library that’s good for
generating XML and HTML documents, and the language is easy to
integrate with JSP; thus the language is great for Web programming.

• String parsing: Many scripting languages are really keen at doing
common tasks like string parsing. Some really excel at it. This covers
the string-parsing capabilities of the languages being covered.

• Productivity: If this language is more productive than Java, then this
section will highlight that fact. Productivity can be made up of several
factors. For example, Smalltalk and Python have an extensive class
library that can make it easy to perform common tasks. In addition,
Python has built-in language support for collection objects including
collection literals that let you define a collection. These language con-
structs and class libraries make programming strikingly productive.

• Working well with Java classes and APIs: Some languages can com-
pile to Java bytecode, a Java class you can use from other Java classes.
Some can extend a Java class into the equivalent of a class for that lan-

Java COM

84 FEBRUARY 2000

Visualize
www.visualizeinc.com

SchemeTcl

Python

Smalltalk Java

Statically
Typed

Dynamically
Typed

C++\C

BeanShell

Bistro

FIGURE 1 Convergence

guage. This section will measure how well a
developer can integrate this language into
existing Java projects.

For example, a language that allows you to
define a class that subclasses a Java class may be
considered to have very good Java integration.

As another example, Bistro extends Smalltalk
syntax so that methods can have type signa-
ture. This makes integration with Java easier.
Smalltalk ordinarily is only dynamically typed;
however, Bistro can be dynamically typed or
statically typed. This is a cool feature that will
make integrating with Java easier.

• Development environment/debugging: Some
languages have facilities to develop and
debug code. Some of the development envi-
ronments are a lot nicer than others. This sec-
tion will compare the development environ-
ments of these scripting languages.

• Other items to be covered: What are the origins
of the languages? Why were they developed?
What problem domain were they developed
for? This often helps in understanding why a
language is adept in certain areas.

Rosetta Stone Hello,World
You’ve probably seen some reference to the

famous (read: infamous) “Hello, World” sample
program that a lot of programming language
books put as their first example program
(thanks to the creators of the C language).

Let’s continue the tradition in this column,
and give you a taste of some of these scripting
languages. Instead of covering one language,
however, we’ll do two from the language series.
Also, instead of a simple “Hello, World,” we’ll
have a “say hello” button. When the user selects
this button, another window will pop up and
display “Hello, World” in an 18-point bold font.
To start this off, we’ll show this program in Java
as in Listing 1.

Since you likely know Java well, I won’t explain
the listing in detail. Now use it to compare some of
the other languages. The code snippets in Listings

2 and 3 will be as close to Listing 1 as possible (as
close as the language permits while still showing
the advantages of the featured language).

Listing 2 is the JavaScript listing for the “say
hello world sample” (Rhino at JavaScript 1.4).

Several JSP implementations support JavaScript,
and a lot of people have used JavaScript and JScript,
so this listing might be familiar to you. We’ll devote
a whole article to JavaScript running in the JVM.

Now let’s show one of my personal favorites
– JPython. JPython integrates nicely with the
Java bean properties and event model. Also,
JPython is very expressive (it weighs in at about
two thirds the size of the shorter of the other
two listings – size measured in bytes, not lines,
since Java can all be on one line).

JPython has a lot of momentum, and its syn-
tax is easy to learn and real tight (not verbose).
A version of JSP, PSP (Python Server Pages),
works in a servlet engine. Keep an eye out for
this one. (Note the double underbar, i.e., __say-
Hello denotes that sayHello is a private
method.) The first article in the language series
will be devoted to JPython, which is to Java-
Beans what Visual Basic is to ActiveX. We’ll
cover it in more detail in the next article.

Parting Shots
Interest is growing in some of these lan-

guages. The JDK 1.3 has added more features
for hooking scripting languages to events. IDE
developers are starting to include scripting lan-
guage support in their tools. One or two of these
languages are likely to be the next Java or XML,
that is, insanely popular Internet Phenomena.

Components (JavaBeans) and distributed
components (CORBA, EJB, RMI) have a symbi-
otic relationship with high-level languages. For
example, Visual Basic did well because of VBX,
OCX and ActiveX components. And COM/
ActiveX/DCOM did well because of tools like
Visual Basic, PowerBuilder, Delphi, and so on.
On the Java platform we have the component
models; we need the glue, that is, tools for the
high-level languages – such as debuggers and
IDEs.

Scripting languages are dynamic, interactive
environments that help you develop Java code
rapidly. The mere assertion that scripting lan-
guages improve productivity five to 10 times
merits your interest. Go find a scripting lan-
guage that runs in the JVM and conquer your
next Java project in record time. Then let us
know how it went.

AUTHOR BIO
Rick Hightower currently works at Buzzeo Corporation
(www.buzzeo.com), the maker of ZEOLogix, an EJB Application
Server, Rules Engine and Workflow. He is a principal software
engineer working on an EJB container implementation and distributed
event management. In addition, he is author of a book, Programming
the Java APIs with JPython, to be published by Addison Wesley
Longman.

85FEBRUARY 2000

Java COM

Embar
cadero

www.

embarcadero.

com

rick_m_hightower@hotmail.com

The mere assertion
that scripting

languages improve
productivity five to

10 times merits
your interest

‘‘

’’

Java COM

86 FEBRUARY 2000

import javax.swing.*;
import java.awt.Font;
import java.awt.event.*;

class MyFrame extends JFrame{
public MyFrame(){
JButton sayHello;
sayHello = new JButton("say hello");
sayHello.setMnemonic('h');
this.getContentPane().add(sayHello);
this.setVisible(true);
this.pack();

sayHello.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){
JButton b = (JButton)ae.getSource();
b.setEnabled(false);
sayHello();

}
});

}
private void sayHello(){
JFrame helloFrame;
JLabel helloLabel;
Font font;
helloFrame = new JFrame("Hello Frame");
helloLabel= new JLabel("Hello World");
font = new Font("Arial", Font.BOLD, 20);
helloLabel.setFont(font);
helloFrame.getContentPane().add(helloLabel);
helloFrame.pack();
helloFrame.setVisible(true);

}
public static void main(String [] args){
MyFrame frame = new MyFrame();
frame.setTitle("My Frame");

}
}

function MyFrame(){
sayHello = new Packages.javax.swing.JButton("say hello");

sayHello.setMnemonic('h');
this.frame = new Packages.javax.swing.JFrame();

this.frame.getContentPane().add(sayHello);
this.frame.setVisible(true);
this.frame.pack();

sayHello.addActionListener(new
Packages.java.awt.event.ActionListener() {
__parent__ : this,

actionPerformed : function(ae) {
ae.getSource().setEnabled(false);

this.__parent__.sayHello();
}

});

function sayHello(){
helloFrame = new Packages.javax.swing.JFrame("Hello

Frame");
helloLabel= new Packages.javax.swing.JLabel("Hello World");
font = new java.awt.Font("Arial", java.awt.Font.BOLD, 20);
helloLabel.setFont(font);
helloFrame.getContentPane().add(helloLabel);
helloFrame.pack();
helloFrame.setVisible(true);

}

this.sayHello=sayHello;
}

function main(){
frame = new MyFrame();
frame.frame.setTitle("My Hello");
}
main();

from javax.swing import JFrame, JButton, JLabel
from java.awt import Font

class MyFrame (JFrame):
def __init__(self):
sayHello = JButton("say hello", mnemonic=ord('h'))
self.contentPane.add(sayHello)
self.visible=1
self.pack()
sayHello.actionPerformed = self.__sayHello

def __sayHello(self, ae):
ae.source.enabled=0
helloFrame = JFrame("Hello Frame")
helloLabel= JLabel("Hello World", font=Font("Arial",

Font.BOLD, 20))
helloFrame.contentPane.add(helloLabel)
helloFrame.pack()
helloFrame.visible=1

if __name__=="__main__":
frame = MyFrame()
frame.title="My Frame"

Listing 3: JPython/Python Lisitng for “say hello world”

Listing 2: JavaScript lisitng for “say hello world”

Listing 1: Java listing for “say hello world”

Over the past four years we have continual-
ly refined the process. Early on, for instance,
we had very restrictive licensing terms and an
informal, undocumented process for collabo-
rating. Over the past four years we have
relaxed the licensing terms considerably, most
recently making the source to Java 2, Standard
Edition runtime, available for free. At the same
time we have been working assiduously to for-
malize the process for how others can get
involved in evolving the standard. Dozens of
companies throughout the world participate
in this documented, audited process. This
process, in fact, allows anyone in the industry
to participate in expert groups for defining
new APIs. Right now there are proposals rang-
ing from real-time OS to an interface for
Braille.

I’d find it difficult to come up with any tech-
nology in the industry that has undergone such
rapid evolution while maintaining a source
base that the industry can rely on to do what
it’s supposed to do.

Okay, you say, but why not just let a stan-
dards body take it over? This is their area of
expertise.

We’ve looked at going that route. And quite
frankly, we’re hard pressed to find an organiza-
tion that moves at Internet speed and can
promise to deliver a model that fosters innova-
tion while preserving compatibility.

I recently received an e-mail from Bruce
Scott, CEO of PointBase, who noted that “the
reality is that Sun’s Java Community Process is
more open to the Java community than a pub-
lic standards process would be.”

Other key Internet de facto standards – such
as HTTP, TCP/IP and XML – aren’t “blessed” by

traditional standards bodies like ISO and
ECMA. Instead, they’re managed by groups
similar to the Java Community Process.

So what’s next? Right now we’re working
overtime to refine the Java Community Process
still further. We’re plowing new ground, as we
have been for the past four years. We’ve tried
lots of things that haven’t worked out. And
when that happens we hear from the industry –
immediately.

We’re constantly looking for input into what
we can do to improve our process as well as
our communication to the world for what we
are doing with the Java platform. Examples
of new technology initiatives can be found
at Sun’s Java Community Process site at
http://java.sun.com/aboutJava/communi-
typrocess.

In the meantime, if you have a moment or
two, I’ll dig out the home videos.

IMHO, Paolini —continued from page 7

87FEBRUARY 2000

Java COM

Elixir
www.elixir.com

There’s a lot of action going on with Java
servlets. The recent public release of Java Servlet
Specification v2.2 by Sun Microsystems enhances
the functionality of the programming model and
the deployment and runtime infrastructure of
servlets, which provides for better packaging,
security, distribution and management of servlet-
based Web applications. The servlet technology is
now a part of the Java 2 Enterprise Edition (J2EE)
architecture and is expected to play an important
role in the Web/enterprise application server
market that has hitherto been dominated by pro-
prietary programming models.

When Java servlets were introduced by Sun in
early 1997, the primary goal was to provide a Java
language alternative to the CGI (Common Gate-
way Interface) model. Accordingly, the initial
model was designed to serve dynamic content for
incoming HTTP requests. Those who followed
servlets from their inception will remember their
early description as applets on the server side.
Such descriptions were perhaps appropriate with
the initial servlet model. Over the past two years,
however, Sun has revised the specification sig-
nificantly to let servlets cater to developing pro-
duction-quality Web applications. Most of
the development, deployment and
runtime features of the servlet model have
changed considerably over several revi-
sions. Servlets have now passed
their infancy, and are beginning to be
used for developing mission-critical
Web applications with commer-
cial application servers such as
WebSphere, Netscape Application
Server, NetDynamics, WebLogic
and Orion.

So where do servlets
stand today?

Servlet Programming Model – Overview
Java servlets are small, server-side programs

that can be composed into dynamic Web applica-
tions. Servlets aren’t user-invokable applications,
but are hosted on servlet containers (more about
them later). Servlet containers operate in tandem
with Web servers, and invoke servlets based on
requests from these servers. When deploying
servlets onto servlet containers, you can also
specify canonical names to them. The servlet
container maintains the mapping between these
canonical names and servlet classes.

The servlet programming model is lightweight.
Its core classes are HttpServlet, HttpServletRequest,
HttpServletResponse, HttpSession, ServletContext
and ServletConfig. Of these, the HttpServlet
is the class that your application servlets
extend from; the rest are interfaces.
Container vendors provide im-
plementations for all these
classes/interfaces.

Java COM

88 FEBRUARY 2000

J D J F E A T U R E

WRITTEN BY A.V.B. SUBRAHMANYAM

Enterprise-le

vel
W

eb
ap

pl
ica

tion developm

en
t

PART 1

89FEBRUARY 2000

Java COM

KL Group
www.klgroup.com

Java COM

90 FEBRUARY 2000

Servlet programming consists of overriding the init(), service() (or one
of its derivatives to process GET, POST, HEAD, DELETE, OPTIONS, PUT
and TRACE requests) and destroy() methods of the HttpServlet class.
Refer to Table 1 for a brief overview of the programming model. In this
table the core classes/interfaces of the servlet API are categorized based
on their responsibilities.

At deployment time the site administrator configures the Web server
to delegate all servlet requests to the servlet container. When a client
user agent (typically a Web browser) sends an HTTP request whose
request path maps to a servlet, the Web server delegates the request to
the servlet container. In response to this, the servlet container creates
HttpServletRequest and HttpServletResponse objects, sets up the envi-
ronment, creates/locates a servlet instance that corresponds to the path
specified in the incoming request, and invokes its service method with
the HttpServletRequest and HttpServletResponse objects. The Http-
ServletRequest and HttpServletResponse objects are Java language
objects that encapsulate the request and response streams from the
client. The servlet’s service method can process the request and write
content dynamically to the response stream. It can also forward the
request and response objects to a JSP to create dynamic content. The
service method can make use of additional utility classes and back-end
layers composed of databases, Enterprise JavaBeans, CORBA servers and
more to process the request.

This model is similar to the well-known CGI model for building Web
sites with dynamic content. In addition to this basic facility, the servlet
specification has facilities for session tracking and state management.
(For an introductory discussion of these aspects, see references 3 and 4 in
the Resources section at the end of this article.) However, the model and
its level of abstraction aren’t adequate for building enterprise-scale Web
applications. These require higher-level abstractions for security, scala-
bility, management and more. In the remaining sections of this article
we’ll look at some of the advanced facilities that the current servlet spec-
ification provides for building and managing large Web applications.

Web Applications, Servlets and Virtual Sandboxes
The J2EE architecture specifies Web applications as the Web-interface

part of the J2EE’s enterprise computing model. Since the J2EE model is
emerging as a standard application server model, let’s look at servlets
from the point of view of Web applications.

A Web application is a collection of Java servlets, JSP pages,
HTML/XML documents and other resources organized in a structured
hierarchy of directories. You can also package constituents of Web appli-
cations into Web archive (WAR) files. A WAR file is primarily an applica-
tion deployment unit.

Servlet containers provide the runtime environment for servlet-based
Web applications. They also provide a host of other services, some of
which we’ll discuss here.

At the time of deployment, you can associate a Web application with a
specific path of the Web server. This path serves as a document root for
serving servlets and other resources that are part of the Web application
and therefore define a name tree under this path. For example, if you
have a Web application called MyWebApp, you can associate it with the
path /MyWebApp of your Web server. All the constituents of the public
directory of your Web applications as well as servlets can be accessed rel-
ative to this path.

As shown in Figure 1, the directory structure of a Web application con-
sists of two parts. The first part is the public directory structure contain-
ing HTML/XML documents, JSP pages, images, applets, and so on. The
container appropriately serves the directory’s contents against incoming
requests. The second part is a special WEB-INF directory that contains
the following:
• A /classes subdirectory with all the class files (servlets and other

helper classes) of your application
• A /lib subdirectory containing all the JAR files of your application
• A web.xml file that is the deployment descriptor of the Web applica-

tion

The contents of this directory are for use only by the containers, and
the containers won’t serve these directly to clients.

What are the implications of the above organization?
First, a Web application (whether archived into a WAR file or not)

allows you to package all constituents of the application into one physi-
cal unit. Prior to the introduction of the notion of Web applications,
you’d usually do the following to deploy an application:
• Copy all your servlets under a directory (which is generally config-

urable) specified by the container vendor.
• Configure the servlets following the procedure/user interfaces speci-

fied by the container vendor.
• Keep all the publicly accessible resources (such as HTML files and

images) under the Web server’s public directory tree.

When compared to this, the Web application directory structure helps
to organize Web applications in a clutterless manner. The publicly acces-
sible resources, as well as your servlet and other classes, can now remain
together. Thus you can deploy multiple Web applications independently
on the same container. Container vendors provide facilities to deploy or
remove Web applications as independent units.

The second important implication is the deployment descriptor. This
is an attempt toward standardizing the deployment configuration of
Web applications. The deployment descriptor, an XML document with a
DTD (Document Type Definition – the current standard for specifying
XML documents) specified in the Java servlet specification, allows you to
postpone certain decisions from the build time to the deployment time.
Examples of such decisions include initialization data for your servlets,
canonical names for servlets, MIME type mappings, security (more
about this later), database parameters and log file names. It’s good prac-
tice to defer most of the hard-coding from your servlets to the deploy-
ment descriptor.

The third implication is that each Web application is associated with a
different context, so you can bundle your servlets in more than one
application. Instances of such servlets remain independent in the same
Java Virtual Machine of the container and don’t share the same context
(more about context in the next section). Thus this notion of a Web

TABLE 1 Constituents of the servlet programming model

MODEL CONSTITUENTS RESPONSIBILITIES
Servlet ServletConfig To access configuration information
Environment (loaded from deployment descriptor)

ServletContext To access environment common to all
servlet instances in a Web application in a JVM

HttpSession To maintain association between Web
application and client; also allows
conversational state management

Servlet HttpServletRequest To encapsulate incoming HTTP request
Invocation information

HttpServletResponse To encapsulate HTTP response

Application The init() method of Any specific initialization of your servlet
Logic your servlet instance before it’s ready to accept requests

The service() method To implement parsing HTTP request, setting or
of your servlet getting information from servlet environment,

your application logic and response
generation by writing to HttpServletResponse
object or redirecting to JSP page

The destroy() method To implement any specific cleanup of your
of your servlet servlet instance before it’s finally withdrawn

from service

91FEBRUARY 2000

Java COM

Concentric
www.concentrichost.net

Java COM

92 FEBRUARY 2000

application introduces a virtual sandbox within a JVM. Note: Previously,
you could deploy the same servlet more than once with different canon-
ical names and initialization parameters. However, all such servlets
share the same context since there was no notion of a Web application.

Finally, different Web applications hosted on the same container can’t
share clients’ session information. That is, if you have two Web applica-
tions deployed on the same container, servlets in both applications see
two different sessions for the same client. This is a marked difference
from the old servlet model in which a container (aka servlet engine) can
establish only one client session. You now need to implement more inge-
nious ways to share data between your Web applications.

Containers – Not Just Hosts
The container, the runtime component of the servlet architecture,

provides runtime and network services for hosting servlet-based Web
applications. Note: While the servlet specification uses the term servlet
container, the J2EE specification uses a more generic term, Web contain-
er, to denote that Web containers can manage Web applications con-
taining JSP pages in addition to servlets.

Also, prior to version 2.2 of the specification, servlet engine was the
term used to denote what is now called a container. While these terms
represent the same in basic functionality, the change in language indi-
cates a shift of emphasis from processing – that’s what an engine does –
to providing a runtime for hosting.

Although a container essentially provides runtime and network ser-
vices for hosting Web applications, it’s worthwhile to interpret a con-
tainer as a request interceptor between network services and the servlet
instances. This allows us to discuss what goes on between the container
receiving a request and a servlet instance being invoked to handle that
request. It also lets us look at certain innovations that containers can
implement by virtue of their request-interception capabilities.

First, what goes on within a typical servlet container after it receives a
request and before it invokes a servlet instance?
1. Request and response marshaling and unmarshaling: The container

maps the requests and responses (typically over HTTP) into Java lan-
guage objects (the HttpServletRequest and HttpServletResponse
objects) that servlet instances can access. This eliminates certain
HTTP protocol-level semantics from servlet development. Examples
include extracting GET/POST parameters, cookies and other headers
from requests, setting cookies, and so on.

2. Request mapping: How does the container resolve an incoming
request to a servlet class? This is based on canonical names assigned
to servlets (in the deployment descriptor) and the root of the Web
application. For example, consider a Web application with its root at
/MyWebApp. If it consists of a servlet SnoopServlet with name Snoop
(specified in the deployment descriptor), the container maps all
requests to http://my.site.com/MyWebApp/Snoop to an instance of
SnoopServlet. Refer to the Servlet API specification for more details on
other mapping rules. The servlet container maintains a naming con-

text for all servlet classes. Within this context the container can iden-
tify a servlet class to handle the request.

3. Environment setup: Containers also create and manage the environ-
ment in which servlet instances exist and operate. As discussed earli-
er, the environment includes the ServletContext, ServletConfig and
HttpSession objects.

4. Life cycle: Containers are responsible for managing the life cycle of
servlet instances, which involves locating or creating, initializing and
destroying servlet instances. Containers manage the life cycle of
HttpSession and ServletContext objects. Based on your servlet’s
threading model, they can also manage a pool of servlet instances and
allocate instances to incoming requests.

From a client’s point of view, the container does the above-mentioned
tasks while intercepting the request (see Figure 2) and delegating to a
servlet instance, although from the container’s point of view these are
essential tasks in handling a request (see Figure 3).

In addition, containers can perform certain advanced tasks while
intercepting a request.

REQUEST SERIALIZATION
Request serialization is one of the techniques used to create

client/server applications with a limited number of threads/objects to
handle requests. In the case of servlets, servlet containers may choose to
implement request serialization for SingleThreadModel servlets. That is,
the container may maintain a fixed number of instances of such servlets,
and can keep the requests waiting in a queue to be processed when the
number of concurrent requests to the servlet is more than the available
number of instances. When an instance becomes free, the container can
delegate a waiting request to it. In general, request serialization requires
the underlying deployment framework (in this case, the container) to be
able to represent requests in serializable structures, then deserialize
them later for processing. Such a capability is inherent with servlet con-
tainers since containers receive HTTP requests and map them to
method invocations on service methods of servlet instances.

DECLARATIVE SECURITY
Declaritive security is a recent addition to the servlet API. A tradition-

al approach to implementing authentication and access control is called
programmatic security and involves the following steps:
1. Program the application to have one more entry point with login

forms.
2. Authenticate the user after he or she submits the login form, and save

some kind of flag in the associated session to indicate that the user has
been authenticated.

http://www.MySite.com/MyWebApp

MyWebApp

Public resources

/WEB-INF/CLASSES

/WEB-INF/lib Private Resources

INF/WEB.XML
}

FIGURE 1 A Web application and its association to a Web server path

HTTP
Request

Container
Process

Interception

Web
Server

Servlet
Instance

Servlet
Instance

Servlet
Instance

FIGURE 2 Container as an interceptor and provider of services

Servlet
InstanceNetwork

level
requests

and
responses

R
eq

ue
st

/r
es

po
ns

e
m

ar
sh

al
in

g
an

d
 u

nm
ar

sh
al

in
g

R
eq

ue
st

m

ap
pi

ng

S
er

vl
et

en
vi

ro
nm

en
t

se
tu

p

In
st

an
ce

an

d
th

re
ad

m

an
ag

em
en

t

init
service
destroy

FIGURE 3 Basic container services

93FEBRUARY 2000

Java COM

Riverton
www.riverton.com

Java COM

94 FEBRUARY 2000

3. To prevent users from directly accessing
your servlets, each servlet should check for
this flag.

With this approach each servlet would be
programmed “to protect itself” from unautho-
rized access. To protect static resources (HTML
pages, images, etc.), you’ll be required to use
the Web server’s authentication mechanisms.
That is, static and dynamic constituents of
your application require different approaches
to implementing authentication.

The servlet specification has now intro-
duced another approach, declarative security,
in which the container takes the responsibility
of protecting Web applications based on the

container’s interception ability. Here’s a sce-
nario:
• Use the container-provided tools to create,

for example, users, passwords and groups/
roles.

• Add a security-constraint entry in the
deployment descriptor of your Web applica-
tion (see Listing 1 for an example). All GET
and POST requests to resources under
/MyWebApp require the user to have a role
called manager. Based on this information,
the container can enforce a login before del-
egating the request to servlets or before serv-
ing static resources. In the example below,
the container uses form-based authentica-
tion and invokes the login.html page for any
request under /MyWebApp.

• When the user requests a resource for the
first time, say, /MyWebApp/buy, the contain-
er automatically serves the /MyWebApp/
login.html page, which requires the user to
fill in the login name and password. Once the
user submits this form, and if the supplied
credentials belong to a user with the role
“manager,” the container authenticates the
user, then redirects the user to /MyWeb-
App/buy. If the credentials don’t match, the
container serves the specified /MyWeb-
App/error.html. The authentication informa-
tion will be valid for the life of the session.

Following are some of the implications of
this approach:
• Since it’s based on the URL patterns associ-

ated with different constituents of Web
applications, it applies uniformly to servlets
as well as static resources.

• The servlets needn’t be programmed to
check credentials every time they’re invoked.

• The security requirements of the application
can be changed at deployment time without
having to change/recompile servlets.

In addition to the form-based approach, the
servlet specification also supports basic, digest
and HTTP client-certificate–based authentica-
tion.

SESSION/CONTEXT PASSIVATION
Passivation is the process of swapping con-

tents of session and context data to a persistent
storage (for example, serialized to files). Con-
tainers can implement passivation to free
some of the session and context objects and
reuse them for different users/applications.
The passivated sessions/contexts can be acti-
vated on demand when there’s a client request
requiring the session/context.

Distribution and Scalability
The new servlet specification addresses the

issue of scalability by providing for distrib-
utable Web applications and distributable con-
tainers. A distributable container consists of a
number of JVMs running on one or more host
machines. In this setup you can deploy your

JVM1 JVM1

Load Balancer

FIGURE 4A Instance-independent load
balancing (sticky)

Career
Central

www.careercentral.com

95FEBRUARY 2000

Java COM

SD2000

Java COM

96 FEBRUARY 2000

servlets on a number of JVMs. Depending on
the load-balancing strategy (vendor-specific),
containers route incoming requests to one of
these JVMs. In such a setup all requests from a
client may or may not be handled by the same
JVM. For seamless processing of requests in
these cases, the container can employ one of
the following strategies:
• A single JVM may handle all requests that are

part of a single client session. That is, the
container maintains an association between
a client/session and a JVM. This JVM affinity
preserves the integrity of state and sessions,
since within a session the client requests are
always served by the same JVM (see Figure
4A).

• Requests that are part of a single session may
not be handled within a single JVM (see Fig-
ure 4B). In this case the container doesn’t
guarantee JVM affinity and will be required to
provide distributed state- and session-man-
agement facilities. This involves distributing
the state (request-specific as well as applica-
tion state-specific) among all the nodes in
the cluster after processing each request,
making one of the nodes responsible for stor-
ing the state, or a combination of both.

The first approach is sticky in nature and
doesn’t require elaborate distribution of state
information across multiple JVMs. The second
strategy is more performance intensive and
may defeat the purpose of load balancing.
Hence, the servlet specification doesn’t require
the second approach. Instead, it expects the
containers to make sure that a single node in a
cluster will handle all requests pertaining to a
user session. However, we can expect some
application server vendors to provide instance-
independent load balancing.

For your Web application to avail itself of this
facility, you should mark your Web applications
as distributable in the deployment descriptor.
Once marked, the container can activate the
servlets contained in the Web application on
multiple JVMs. The container can then employ
any load-balancing strategy to distribute the
incoming requests to servlets in one of the JVMs.

Although thus far the servlet specification is
silent about the failover capability of servlet
containers, it’s one of the features we can
expect from some of the Web application serv-
er vendors. It requires that the container swap
the HttpSession (and perhaps ServletContext
too) objects of each application (in each JVM)
to a persistent media whenever there’s a
change in the state of these objects. This way,
active client sessions can be reactivated upon

restarting the container (or the host nodes
thereof).

In addition, containers may implement ses-
sion/context swapping between JVMs in the
cluster to shift load from one JVM to another or
to add/remove hosts in the cluster.

Summary
Java servlets are one of the major compo-

nents of the J2EE architecture. As most major
application server vendors are moving in the
direction of the J2EE application programming
model, Java servlets have gained added impor-
tance. Servlets are now replacing most of the
older, proprietary programming models for
building Web applications.

To summarize this discussion, the servlet pro-
gramming model now addresses enterprise-level
Web application development. The notion of
Web applications and containers has profound
implications on the way dynamic Web sites can
be built and managed – a major leap from the
earlier single-JVM, single-application model.

In Part 2 of this article we’ll look at certain
precautions that need to be taken while build-
ing servlet-based Web applications in the
changed scenario.

Resources
1. Java Servlet Specification v2.2:

http://java.sun.com/products/servlet/2.2/
index.html

2. Java 2 Enterprise Edition:
http://java.sun.com/products/j2ee

3. Hunter, J., and Crawford, W. (1998). Java
Servlet Programming. O'Reilly & Associates.

4. Servlet Essentials:
www.novocode.com/doc/servlet-essentials

AUTHOR BIO
Dr. Subrahmanyam is a technical consultant with the electronic
commerce division of Wipro Technologies, based in Bangalore, India.
You can visit him at his Web site, www.Subrahmanyam.com.

<security-constraint>
<!-- Define a collection of resources -->
<web-resource-collection>
<web-resource-name>My Web Application</web-resource-name>
<url-pattern>/</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>

<!-- Define authentication requirements -->
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

<!-- Specify how user-container communication should be
handled -->
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

<!-- Specify how authentication should be done -->
<login-config>

<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>

</form-login-config>
</login-config>

Listing 1: Deployment descriptor for form-based authentication

subrahmanyam_avb@technologist.com

Java servlets are

one of the major

components of the

J2EE architecture

‘‘

’’

JVM1 JVM1

Load Balancer

FIGURE 4B Instance-dependent load
balancing

97FEBRUARY 2000

Java COM

Geek
Cruises

www.geekcruises.com

Develop-
mentor

www.develop.com

ADVERTISER URL PH PG

4TH PASS WWW.4THPASS.COM 877.484.7277 29

AMERICAN CYBERNETICS WWW.SOFTEXPORT.COM 800.899.0100 27

APACHE 2000 WWW.APACHECON.COM 650.404.9944 89

APPLIED REASONING WWW.APPLIEDREASONING.COM 800.260.2772 35

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 28

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 90-101

CERTIFY ON-LINE WWW.CERTIFYONLINE.COM 877.JAVA YES 66

COMPUTERJOBS.COM WWW.COMPUTERJOBS.COM 39

CONCENTRIC NETWORK WWW.CONCENTRICHOST.NET 800.476.0196 77

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 87

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD/ 65 532.4300 63

EMBARCADERO WWW.EMBARCADERO.COM/ADMINISTER 65

EMBARCADERO WWW.EMBARCADERO.COM/DESIGN 67

EMBARCADERO WWW.EMBARCADERO.COM/DEVELOP 69

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 45

IAM CONSULTING WWW.IAMX.COM 212.580.2700 61

IBM WWW.IBM.COM/DEVELOPERWORKS 13

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 79

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 79-82

JAVACON 2000 WWW.JAVACON2000.COM 914.735.0300 83

JAVELIN WWW.JAVELINTECH.COM 612.630.1063 47

JDJ CONSULTING SERVICES WWW.OPENJOBS@SYS-CON.COM 41

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 88

KL GROUP INC. WWW.KLGROUP.COM/PERFORMANCE 888.328.9597 15

KL GROUP INC. WWW.KLGROUP.COM/INTERFACE 888.328.9596 71

KL GROUP INC. WWW.KLGROUP.COM/DEADLINE 888.328.9596 104

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 49

NEW ATLANTA WWW.NEWATLANTA.COM/ 678.366.3211 57

NUMEGA WWW.COMPUWARE.COM/NUMEGA 800.4-NUMEGA 19

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 52-53

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM/IDC35/ 415.925.3460 55

OFFICE.COM 212.995.7742 47

PERSISTENCE WWW.PERSISTENCE.COM 17

POINTBASE WWW.POINTBASE.COM/JDJ 877.238.8798 25

PRAMATI WWW.PRAMATI.COM/J2EE.HTM 914.876.3007 51

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 20

RESPONSE SYSTEMS SERVICES, INC. 212.295.4305 41

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 85

SEGUE SOFTWARE WWW.SEGUE.COM/ADS/CORBA 800.287.1329 11

SIC CORPORATION WWW.ACCESS21.CO.KR 822.227.398801 43

SILVERSTREAM SOFTWARE, INC. WWW.SILVERSTREAM.COM 888.823.9700 103

SOFTWARE AG WWW.SOFTWAREAG.COM/BOLERO 925.472.4900 21

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 31

SYMANTEC WWW.VISUALCAFE.COM 4

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.884.8665 37

TOGETHERSOFT LLC WWW.TOGETHERSOFT.COM 919.772.9350 6

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 73

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 87

VSI WWW.VSI.COM/BREEZE 800.556.4VSI 75

YOUCENTRIC WWW.YOUCENTRIC.COM/NOBRAINER 888.462.6703 33

ADVERTISINGINDEX

Java COM

Unify, Evergreen Internet
Form Strategic Partnership
(New York, NY) – Unify Corpo-
ration and Evergreen Internet
announced a strategic part-
nership at the December
eBusiness Conference and
Expo in New York.

As a result of the partner-
ship, Unify enhances its Unify
eWave Commerce product by
being able to deliver e-com-
merce components such as
merchandise service, shop-
ping cart, inventory manage-
ment, transaction
manager, and
more, along
with 100+
JavaBeans for powerful,
dynamic and customized
Web site automation. Ever-
green Internet will integrate
its products with the Unify
eWave Engine Java applica-
tion server. www.ever-
green.com www.unify.com

Allaire Acquires
Valtó Systems
(Cambridge, MA) –
Allaire Corporation
has acquired
Valtó Systems, a
pioneer in Enterprise
JavaBeans server technology,
for 225,000 shares of Allaire
common stock. The acquisi-
tion further expands Allaire’s
position in the emerging e-
business platform market.

The new Java technologies
will complement, support
and integrate with Allaire’s
entire product offering,
including the JRun JSP server,
the ColdFusion Web applica-
tion server and the Allaire
Spectra packaged system.
www.allaire.com
www.valto.com

Zucotto Offers
Integrated Solutions for
Wireless Applications
(San Diego, CA) – Zucotto
Systems Inc. has a fully
embedded Java and Jini solu-
tion for hand-
held devices.
www.zucotto.com

Versant Releases
VAR 2.1
(Fremont, CA) – Versant Cor-
poration introduces Versant
Asynchronous Replication
(VAR) 2.1, an extensible, Java-
based replication solution for
enterprises.

VAR 2.1 offers several new
features, including perfor-
mance improvements for

high-
band-
width

links and a flexible manual
replication option. VAR 2.1
also supports a rules-based

policy for batching of replica-
tion transactions. Supported
platforms include Windows
NT and UNIX.
www.versant.com

Tidestone’s Formula One
Supports Oracle8i Lite
(Overland Park, KS) – Tide-
stone Technologies, Inc.’s Java
spreadsheet technology, For-
mula One, supports Oracle8i
Lite, the Internet platform for
mobile computing.

A demo illustrating how
Formula One can be used to
add data intelligence to Ora-
cle8i Lite applications can be
accessed on the Web at
http://oracle.tidestone.com/
demos_f1j/demo_oracle_wtg.
jsp .

Harder to Build a Platform
for E-Commerce Apps,
Says Ovum
(Boston, MA) – Continuing
uncertainty over Java stan-

dards will make it harder for
companies to formalize their
Web application develop-

ment
strategies,
claims
Ovum, an

independent research and
consulting company, in a
recent report.

Ovum predicts that it will
take at least six months
before there are enough stan-
dard implementations of the
Java platform for developers
to make a sensible choice.
Until there is real, broad sup-
port for the Java platform,
development tools and appli-
cation servers will continue
to be closely bound to each
other, making it difficult to
select tools and runtime ser-
vices independently.
www.ovum.com

Whirlpool Announces
Key Steps in Extension of
Global Business Strategy
(Benton Harbor, MI) –
Whirlpool Corporation has
announced
agreements to
partner with
both Cisco Sys-
tems and Sun Microsystems
in the development of its Net-
worked Home Solutions Ini-
tiative. The new initiative will
bring the power of broad-
band Internet technology to a
new generation of Whirlpool
networked home products
and enhanced services.
www.whirlpoolcorp.com

Get Your Own
Subscription to the

Finest Technical Journals
in the Industry!

1-800-513-7111
www.sys-con.com

(Somers, NY / Mountain
View, CA) – IBM and Ameri-
ca Online, Inc. (AOL),
announce that the Sun-
Netscape
Alliance will sig-
nificantly expand
the number of
iPlanet Internet infrastruc-
ture and e-commerce appli-
cation products that are
ported to the IBM AIX UNIX
platform.

Under the terms of the
agreement, resources for
porting, testing and sup-
porting the applications will

be supplied by the
Sun-Netscape
Alliance. IBM will pro-
vide on-site technical

assistance, development
resources, hardware and
software to the Alliance to
assist in the porting.
www.ibm.com

IBM and AOL Expand
iPlanet Products on AIX

99FEBRUARY 2000

Java COM

HiT Software Releases
E-Generation DB2 Access
(San Jose, CA) – HiT Software has
introduced HiT ODBC/DB2 v3.1,
high-performance direct connec-
tivity middleware for DB2 server
access. The new software provides
latest generation ODBC level 3
compliance, SSL v3.0 encryption
support, higher performance and
increased flexibility.

HiT ODBC/DB2 client and
server versions and their associ-
ated Developer Edition are avail-
able immediately. Trial down-
loads of the runtime middleware
can be downloaded at
www.hit.com.

Cimmetry Launches Java-
Based Version of AutoVue
(Montreal, Quebec) – Cimmetry
Systems Inc. has announced its
upcoming release of JVue, a Java-
based version of its flagship view-
ing and markup product,
AutoVue. The new release, code-
named JVue, provides the fea-
tures of AutoVue in a true thin-
client, zero administration solu-
tion.

JVue is planned for release in
the first quarter of this year.
www.cimmetry.com/jvue

IBM RS/6000 S80 Sets Java
Performance Records
(Somers, NY) – IBM has
announced that a six-way
RS/6000 S80 server running the
AIX operating system has set new
records for Java performance and
scalability, surpassing the previ-
ous record hold-
er, a Sun E6500
server contain-
ing three times
more than the
number of
processors. The
achievement
establishes the S80 as the leading
computing platform for Java
server applications.

A download of IBM AIX Devel-
oper Kit, Java 2 Technology Edi-
tion, Version 1.2.2 for AIX Version
4.3.3 is available from the IBM
Java Developer Kit download site
at www.ibm.com/java/jdk/down-
load/index.html.

PurchaseSoft Adds
Forward Auctioning
(Minneapolis, MN) – Purchase-
Soft, Inc., has added forward auc-
tioning capabilities to its Java-
and HTML-
based prod-
ucts, Purchase-
Smart and SourceSmart.
www.purchasesoft.com

ShopNow.com Connects
with Persistence Software
(San Mateo, CA) – ShopNow.com
Inc., one of the Internet’s largest
shopping portals,
has chosen Persis-
tence PowerTier as
the application server behind its

online transaction
processing system.
The solution will

enable ShopNow.com to create a
system that will sustain up to 100
transactions per second.
www.shopnow.com
www.persistence.com

Sun Introduces .com
Home of the Future
(Las Vegas, NV) – Giving con-
sumers the opportunity to expe-
rience the home of the future,
Sun Microsystems, Inc., unveiled
the .com Home at the January
Consumer Electronics Show in
Las Vegas.

The .com Home exhibit
demonstrates Internet-enabled
solutions using Sun’s technolo-
gies from leading industry part-
ners and manufacturers
in the wireless, inter-
active television and
home gateway mar-
kets. Sun’s .com Home
demonstrates how dozens of dif-
ferent consumer appliances and
services can interact seamlessly
into a smart home network,
offering a high level of consumer
convenience. www.sun.com.

Vignette Acquires Engine 5
(Austin, TX) – Vignette Corpora-
tion has acquired Engine 5, Ltd.,
a pioneer in enterprise-wide Java
server technology. The acquisi-
tion deepens Vignette’s commit-
ment to Java and the J2EE stan-
dard. The Engine 5 EJB server
technology will be leveraged
throughout the Vignette product
family and will complement,
support and integrate with J2EE-
based offerings such as IBM’s
newly announced WebSphere
Commerce Suite, Oracle’s iStore
and BEA’s WebLogic.
www.vignette.com.

POET Launches Object
Server Suite v6.0
(San Mateo, CA) – POET
Software has released an ODMG
3.0-compliant version of its object
database management system,
Object Server Suite (OSS) v6.0.

Built around POET’s FastOb-
ject technology, the POET Object
Server Suite provides developers
with a cost-effective object data-
base solution for creating com-
plex packaged Java and C++
applications. www.poet.com.

Voting Time for JDJ
Readers’ Choice Awards
(Pearl River, NY) – Java
Developer’s Journal Read-
ers’ Choice Awards – the
“Oscars” of the software
industry – are given to the
best Java products of the year.
Since January 13, JDJ readers
have been logging on to
www.sys-con.com/java/readers-
choice2000 and voting for their
favorite software products in 17
categories. Voting continues
through May 31. Those receiving
the most votes will receive
awards during a special ceremo-
ny at the JavaOne Expo in June.

Last year more than 15,000 JDJ
readers cast their votes for the best
products of the year. Winners and
finalists in 14 award categories
were acknowledged for their con-
tributions involving development
of Java-based solutions that
respond to and meet the increas-
ing demands of the industry.

Track Data Launches a Java
Version of MyTrack for Macs
(New York, NY) – Track Data Cor-
poration released a Java-based
beta version of its successful
myTrack online trading and mar-
ket data system that’s compatible
with the Mac operating system.
MyTrack delivers free-streaming
delayed quotes and unlimited
free real-time extended quotes, as
well as breaking company news, a
trade-by-trade log, charting for
technical analysis and a propri-
etary library of intraday market
statistics. The company also
offers online trading through its
myTrack Internet-based personal
investment service. The new ver-
sion is available to download at
www.mytrack.com.

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

(Pearl River, NY) – Java Develop-
er’s Journal is launching Java-
Con 2000: Building the New
Enterprise. This
key Java-focused
conference will
be presented on
September 24–27,
2000, at the Santa
Clara Convention Center in Cali-
fornia.

“JavaCon 2000 is expected to
be the largest Java developer
conference of the year after
JavaOne. It will provide valuable
insight for Java developers
charged with building the next
generation of Java enterprise
applications,” according to Fuat
Kircaali, founder of SYS-CON

Publications and publisher of
Java Developer’s Journal.

Attendees will be able to select
from a variety of
sessions, includ-
ing JavaSpaces
and Jini; Building
Mission-Critical
Applications with

Java; Advanced JFC/SWING
Component Integration; Real-
Time Java; Designing High Per-
formance e-Commerce Systems
with EJB; Java, XML and DCOM;
Using Java, CORBA, and XML for
a Distributed Object Architec-
ture; Java in Embedded Systems;
Advanced JavaBeans and more.

For online registration go to
www.javacon2000.com.

JDJ Announces JavaCon
2000 Conference

Java COM

100 FEBRUARY 2000

JDJ S
Spr

www.jdjs

101FEBRUARY 2000

Java COM

Store
ead
store.com

Java COM

102 FEBRUARY 2000

Employment
Ad

103FEBRUARY 2000

Java COM

Employment
Ad

Java COM

104 FEBRUARY 2000

Employment
Ad

105FEBRUARY 2000

Java COM

Employment
Ad

Java COM

106 FEBRUARY 2000

Employment
Ad

107FEBRUARY 2000

Java COM

Employment
Ad

Java COM

108 FEBRUARY 2000

Employment
Ad

109FEBRUARY 2000

Java COM

Employment
Ad

Java COM

110 FEBRUARY 2000

Employment
Ad

111FEBRUARY 2000

Java COM

Employment
Ad

Java COM

112 FEBRUARY 2000

Employment
Ad

113FEBRUARY 2000

Java COM

Employment
Ad

Java COM

114 FEBRUARY 2000

Employment
Ad

115FEBRUARY 2000

Java COM

Employment
Ad

Java COM

116 FEBRUARY 2000

Employment
Ad

117FEBRUARY 2000

Java COM

Employment
Ad

Java COM

118 FEBRUARY 2000

Employment
Ad

119FEBRUARY 2000

Java COM

Employment
Ad

Java COM

120 FEBRUARY 2000

Java Record
Circulation

www.javadevelopersjournal.com

121FEBRUARY 2000

Java COM

Java Record
Circulation

www.javadevelopersjournal.com

Java COM

122 FEBRUARY 2000

Internet Standards: Opening the Door for the Next Generation of E-Business
WRITTEN BY ROD SMITH

I M H O

Why Open Standards?
When you consider the dynamic connections

and just-in-time integration resulting from
today’s networked business relationships, it’s
easy to appreciate how keeping standards propri-
etary is clearly the strategy of the last computing
generation. As e-business enters the 21st century,

open standards will fuel the Internet, further speeding the pace of the
new economy. The importance of open standards extends across all
industries because they enable markets to grow and evolve faster. By
creating a framework in which all players can participate, open stan-
dards are integral to the success of the Internet as a business channel.

The Internet’s brief history has already shown that the free
exchange of information is good business for everyone. It’s no coin-
cidence that underlying technologies like TCP/IP, the communica-
tion protocol for the Internet, and HyperText Transfer Protocol
(HTTP), the rules for exchanging files on the Web, have enabled the
economy to reach new highs recently. As industry standards, their
value lies in providing an established and open foundation for effec-
tive use of the Internet for e-business and e-commerce.

If software may be thought of as providing the “electrical function-
ality” of e-business, let’s make some real-life analogies in support of
open standards. Picture being unable to purchase a new appliance
without first checking to see whether it adhered to your electric com-
pany’s unique specifications for generating power. Imagine if you
couldn’t call a friend in a neighboring state because your local phone
companies couldn’t agree on a standard to allow their telephone net-
works to communicate. According to International Data Corporation,
the number of IP telephony minutes will reach 135 billion by 2004,
and revenue for this service will rise from $480 million in 1999 to $19
billion by 2004. This exponential growth wouldn’t be possible without
standards for telephone communication.

We believe that XML, an open standard from the World Wide Web
Consortium (W3C), is a key part of e-business’ feverish growth spurt.
Companies that have built business models based on open stan-
dards such as XML are already seeing their substantial marketplace
success enhanced by the ubiquity of these technologies.

How Do Internet Predictions Support the Need for Open Standards?
More people than ever are using and sharing information online –

IDC forecasts that the U.S. Internet user population will reach 137
million, and the worldwide Internet population will exceed 274 mil-
lion this year alone. The recent spate of Web-enabled mobile phones
and wireless personal digital assistants (PDAs) is providing a new
benchmark of Internet accessibility, particularly among today’s
increasingly mobile workforce.

Consider the burgeoning business-to-business market, valued at
$1.3 trillion by Forrester Research by the year 2003. In the years ahead,
as we’ve seen with online retailers, markets will become more discrim-
inating in the B2B segment. Leading companies will have a strong
Internet strategy integrated with other non-Internet channels. These
companies will alter the concept of an Internet endeavor as a stand-
alone entity, disconnected from the core business. Leaders have
already recognized this and are well on their way to tighter integration
of the two.

Therefore, even more so in the 21st century and beyond, the entire
success of a business in the online realm will hinge on its ability to
exchange information seamlessly, regardless of where it’s generated
or headed. E-business technologies such as Java and XML can enable
these transactions to flow smoothly throughout the enterprise only
when they are based on true open standards.

When you consider how the majority of Fortune 500 companies
use multiple, disparate operating systems, the implications for inter-
nal data integration alone – let alone conducting e-business with
outside partners – are staggering without the help of a common, eas-
ily accessible base code. Savvy customers recognize and demand the
investment protection afforded by open standards to ensure an
application’s extensibility into current and future infrastructures.

While portions of these technologies have matured sufficiently, we
remain vigilant to ensure that vendor-neutral standards organiza-
tions serve as the gatekeepers to their further development. With the
understanding that interoperability of various processes is secured,
small and large companies alike can successfully conduct e-business
and compete more effectively in the marketplace.

As further proof, consider that IDC predicted a need for 750,000
Java programmers in 2000. Clearly, nurturing creativity among the
development community is important for everyone. Developers
need to be able to write to a clear, pervasively distributed platform of
APIs and functions. This demand underscores the importance of
ensuring that open standards truly remain open for the benefit of all.

How Do We Get There?
IBM is deeply committed to industry standards that best support

the multiplatform, multivendor and dynamic environment that the
Internet has enabled. Simply put, we believe that e-business is all
about “cooperating on standards and competing on implementa-
tion,” and we act on these beliefs. This can only occur in the context
of true, cross-industry commitment to these standards.

To bring ubiquity to computing, the industry requires a founda-
tion of open standards managed by vendor-neutral standards orga-
nizations. As organizations like the W3C, ISO, OASIS and ECMA have
proved: “If you define it, they will use it.” The reliance of these con-
sortiums on cross-industry involvement speeds the time-to-market
of technology by drawing on the perspective, expertise and resources
that only a group of leading companies can provide. Standards
processes managed by a lone vendor will not work to bring the ubiq-
uity we as an industry require. Only vendor-neutral standards bodies
can provide the stability developers need to deliver the next genera-
tion of e-business solutions.

There is an important issue at stake here: the freedom to develop in
an environment that will remain open, available, and consistent. IBM
will remain vocal on issues relating to standardization of key technolo-
gies for the evolution of e-business. It’s simply the right thing to do.

AUTHOR BIO
Rod Smith is vice president of Java Software for IBM Corporation. Rod has served in many capacities
at IBM, most recently as chief technologist and vice president of Internet technology for the Network
Computing Software Division. Rod, a member of the Institute of Electrical and Electronics Engineers,
Inc., holds a BA and an MS in economics from Western Michigan.

123FEBRUARY 2000

Java COM

Silverstream
www.silverstream.com

Java COM

124 FEBRUARY 2000

KL Group
www.klgroup.com

